Newer
Older
default:
break;
case TargetInstrInfo::INLINEASM: {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
FinalSize += AI->getInlineAsmLength(AsmStr);
break;
}
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
break;
case TargetInstrInfo::IMPLICIT_DEF:
case TargetInstrInfo::DECLARE:
case X86::DWARF_LOC:
case X86::FP_REG_KILL:
break;
case X86::MOVPC32r: {
// This emits the "call" portion of this pseudo instruction.
++FinalSize;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
break;
}
}
CurOp = NumOps;
break;
case X86II::RawFrm:
++FinalSize;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
if (MO.isMBB()) {
FinalSize += sizePCRelativeBlockAddress();
} else if (MO.isGlobal()) {
FinalSize += sizeGlobalAddress(false);
} else if (MO.isSymbol()) {
FinalSize += sizeExternalSymbolAddress(false);
} else if (MO.isImm()) {
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
} else {
assert(0 && "Unknown RawFrm operand!");
}
}
break;
case X86II::AddRegFrm:
++FinalSize;
Nicolas Geoffray
committed
++CurOp;
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri)
dword = true;
if (MO1.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJTI())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRMDestReg: {
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRMDestMem: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += X86AddrNumOperands + 1;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRMSrcReg:
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
case X86II::MRMSrcMem: {
int AddrOperands;
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
Opcode == X86::LEA16r || Opcode == X86::LEA32r)
AddrOperands = X86AddrNumOperands - 1; // No segment register
else
AddrOperands = X86AddrNumOperands;
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
CurOp += AddrOperands + 1;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
++FinalSize;
if (Desc->getOpcode() == X86::LFENCE ||
Desc->getOpcode() == X86::MFENCE) {
// Special handling of lfence and mfence;
FinalSize += sizeRegModRMByte();
} else if (Desc->getOpcode() == X86::MONITOR ||
Desc->getOpcode() == X86::MWAIT) {
// Special handling of monitor and mwait.
FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
} else {
++CurOp;
FinalSize += sizeRegModRMByte();
}
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri32)
dword = true;
if (MO1.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJTI())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += X86AddrNumOperands;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO.isImm())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64mi32)
dword = true;
if (MO.isGlobal()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO.isSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO.isCPI())
FinalSize += sizeConstPoolAddress(dword);
else if (MO.isJTI())
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
}
case X86II::MRMInitReg:
++FinalSize;
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
FinalSize += sizeRegModRMByte();
++CurOp;
break;
}
if (!Desc->isVariadic() && CurOp != NumOps) {
cerr << "Cannot determine size: ";
MI.dump();
cerr << '\n';
abort();
}
return FinalSize;
}
unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const TargetInstrDesc &Desc = MI->getDesc();
bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
if (Desc.getOpcode() == X86::MOVPC32r)
Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
return Size;
}
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = DebugLoc::getUnknownLoc();
if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
const TargetInstrInfo *TII = TM.getInstrInfo();
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (TM.getRelocationModel() == Reloc::PIC_ &&
TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0,
X86II::MO_GOT_ABSOLUTE_ADDRESS);
} else {
GlobalBaseReg = PC;
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;