Newer
Older
//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BasicValueFactory, a class that manages the lifetime
// of APSInt objects and symbolic constraints used by GRExprEngine
// and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/BasicValueFactory.h"
Ted Kremenek
committed
#include "clang/Analysis/PathSensitive/RValues.h"
using namespace clang;
Ted Kremenek
committed
typedef std::pair<RVal, uintptr_t> RValData;
typedef std::pair<RVal, RVal> RValPair;
Ted Kremenek
committed
namespace llvm {
Ted Kremenek
committed
template<> struct FoldingSetTrait<RValData> {
static inline void Profile(const RValData& X, llvm::FoldingSetNodeID& ID) {
Ted Kremenek
committed
X.first.Profile(ID);
Ted Kremenek
committed
ID.AddPointer( (void*) X.second);
Ted Kremenek
committed
}
};
template<> struct FoldingSetTrait<RValPair> {
static inline void Profile(const RValPair& X, llvm::FoldingSetNodeID& ID) {
X.first.Profile(ID);
X.second.Profile(ID);
}
};
Ted Kremenek
committed
}
Ted Kremenek
committed
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValData> >
Ted Kremenek
committed
PersistentRValsTy;
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValPair> >
PersistentRValPairsTy;
BasicValueFactory::~BasicValueFactory() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
I->getValue().~APSInt();
Ted Kremenek
committed
delete (PersistentRValsTy*) PersistentRVals;
delete (PersistentRValPairsTy*) PersistentRValPairs;
}
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
llvm::FoldingSetNodeID ID;
void* InsertPos;
typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
bool isUnsigned) {
llvm::APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
unsigned bits = Ctx.getTypeSize(T);
llvm::APSInt V(bits, T->isUnsignedIntegerType());
V = X;
return getValue(V);
}
const SymIntConstraint&
BasicValueFactory::getConstraint(SymbolID sym, BinaryOperator::Opcode Op,
const llvm::APSInt& V) {
llvm::FoldingSetNodeID ID;
SymIntConstraint::Profile(ID, sym, Op, V);
void* InsertPos;
SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
if (!C) {
C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
new (C) SymIntConstraint(sym, Op, V);
SymIntCSet.InsertNode(C, InsertPos);
}
return *C;
}
Ted Kremenek
committed
const llvm::APSInt*
BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op,
const llvm::APSInt& V1, const llvm::APSInt& V2) {
switch (Op) {
default:
assert (false && "Invalid Opcode.");
case BinaryOperator::Mul:
Ted Kremenek
committed
return &getValue( V1 * V2 );
case BinaryOperator::Div:
Ted Kremenek
committed
return &getValue( V1 / V2 );
case BinaryOperator::Rem:
Ted Kremenek
committed
return &getValue( V1 % V2 );
case BinaryOperator::Add:
Ted Kremenek
committed
return &getValue( V1 + V2 );
case BinaryOperator::Sub:
Ted Kremenek
committed
return &getValue( V1 - V2 );
Ted Kremenek
committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
case BinaryOperator::Shl: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
// FIXME: Expand these checks to include all undefined behavior.
if (V2.isSigned() && V2.isNegative())
return NULL;
uint64_t Amt = V2.getZExtValue();
if (Amt > V1.getBitWidth())
return NULL;
return &getValue( V1.operator<<( (unsigned) Amt ));
}
case BinaryOperator::Shr: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
// FIXME: Expand these checks to include all undefined behavior.
if (V2.isSigned() && V2.isNegative())
return NULL;
uint64_t Amt = V2.getZExtValue();
if (Amt > V1.getBitWidth())
return NULL;
Ted Kremenek
committed
return &getValue( V1.operator>>( (unsigned) Amt ));
}
case BinaryOperator::LT:
Ted Kremenek
committed
return &getTruthValue( V1 < V2 );
case BinaryOperator::GT:
Ted Kremenek
committed
return &getTruthValue( V1 > V2 );
case BinaryOperator::LE:
Ted Kremenek
committed
return &getTruthValue( V1 <= V2 );
case BinaryOperator::GE:
Ted Kremenek
committed
return &getTruthValue( V1 >= V2 );
case BinaryOperator::EQ:
Ted Kremenek
committed
return &getTruthValue( V1 == V2 );
case BinaryOperator::NE:
Ted Kremenek
committed
return &getTruthValue( V1 != V2 );
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
case BinaryOperator::And:
Ted Kremenek
committed
return &getValue( V1 & V2 );
case BinaryOperator::Or:
Ted Kremenek
committed
return &getValue( V1 | V2 );
case BinaryOperator::Xor:
Ted Kremenek
committed
return &getValue( V1 ^ V2 );
}
}
Ted Kremenek
committed
Ted Kremenek
committed
const std::pair<RVal, uintptr_t>&
BasicValueFactory::getPersistentRValWithData(const RVal& V, uintptr_t Data) {
Ted Kremenek
committed
// Lazily create the folding set.
if (!PersistentRVals) PersistentRVals = new PersistentRValsTy();
llvm::FoldingSetNodeID ID;
void* InsertPos;
V.Profile(ID);
Ted Kremenek
committed
ID.AddPointer((void*) Data);
Ted Kremenek
committed
PersistentRValsTy& Map = *((PersistentRValsTy*) PersistentRVals);
Ted Kremenek
committed
typedef llvm::FoldingSetNodeWrapper<RValData> FoldNodeTy;
Ted Kremenek
committed
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
Ted Kremenek
committed
new (P) FoldNodeTy(std::make_pair(V, Data));
Ted Kremenek
committed
Map.InsertNode(P, InsertPos);
}
Ted Kremenek
committed
return P->getValue();
Ted Kremenek
committed
}
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
const std::pair<RVal, RVal>&
BasicValueFactory::getPersistentRValPair(const RVal& V1, const RVal& V2) {
// Lazily create the folding set.
if (!PersistentRValPairs) PersistentRValPairs = new PersistentRValPairsTy();
llvm::FoldingSetNodeID ID;
void* InsertPos;
V1.Profile(ID);
V2.Profile(ID);
PersistentRValPairsTy& Map = *((PersistentRValPairsTy*) PersistentRValPairs);
typedef llvm::FoldingSetNodeWrapper<RValPair> FoldNodeTy;
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(std::make_pair(V1, V2));
Map.InsertNode(P, InsertPos);
}
return P->getValue();
}