Newer
Older
//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Operator.h"
const ReturnInst* r0 = ReturnInst::Create(C);
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
const ReturnInst* r1 = ReturnInst::Create(C, One);
EXPECT_EQ(1U, r1->getNumOperands());
EXPECT_NE(r1->op_end(), b);
EXPECT_EQ(One, *b);
EXPECT_EQ(One, r1->getOperand(0));
EXPECT_EQ(r1->op_end(), b);
// Test fixture that provides a module and a single function within it. Useful
// for tests that need to refer to the function in some way.
class ModuleWithFunctionTest : public testing::Test {
protected:
ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
FArgTypes.push_back(Type::getInt8Ty(Ctx));
FArgTypes.push_back(Type::getInt32Ty(Ctx));
FArgTypes.push_back(Type::getInt64Ty(Ctx));
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F;
};
TEST_F(ModuleWithFunctionTest, CallInst) {
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
// Make sure iteration over a call's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Call->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST_F(ModuleWithFunctionTest, InvokeInst) {
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
// Make sure iteration over invoke's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Invoke->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST(InstructionsTest, BranchInst) {
LLVMContext &C(getGlobalContext());
// Make a BasicBlocks
BasicBlock* bb0 = BasicBlock::Create(C);
BasicBlock* bb1 = BasicBlock::Create(C);
// Mandatory BranchInst
const BranchInst* b0 = BranchInst::Create(bb0);
EXPECT_TRUE(b0->isUnconditional());
EXPECT_FALSE(b0->isConditional());
EXPECT_EQ(1U, b0->getNumSuccessors());
EXPECT_EQ(1U, b0->getNumOperands());
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
// Conditional BranchInst
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
EXPECT_FALSE(b1->isUnconditional());
EXPECT_TRUE(b1->isConditional());
EXPECT_EQ(2U, b1->getNumSuccessors());
EXPECT_EQ(3U, b1->getNumOperands());
User::const_op_iterator b(b1->op_begin());
// check COND
EXPECT_NE(b, b1->op_end());
EXPECT_EQ(One, *b);
EXPECT_EQ(One, b1->getOperand(0));
EXPECT_EQ(One, b1->getCondition());
EXPECT_EQ(bb1, *b);
EXPECT_EQ(bb1, b1->getOperand(1));
EXPECT_EQ(bb1, b1->getSuccessor(1));
EXPECT_EQ(bb0, *b);
EXPECT_EQ(bb0, b1->getOperand(2));
EXPECT_EQ(bb0, b1->getSuccessor(0));
EXPECT_EQ(b1->op_end(), b);
// clean up
delete b0;
delete b1;
delete bb0;
delete bb1;
}
TEST(InstructionsTest, CastInst) {
LLVMContext &C(getGlobalContext());
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int16Ty = Type::getInt16Ty(C);
Type *Int32Ty = Type::getInt32Ty(C);
Type *Int64Ty = Type::getInt64Ty(C);
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
Type *X86MMXTy = Type::getX86_MMXTy(C);
Type *HalfTy = Type::getHalfTy(C);
Type *FloatTy = Type::getFloatTy(C);
Type *DoubleTy = Type::getDoubleTy(C);
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
Duncan Sands
committed
const Constant* c8 = Constant::getNullValue(V8x8Ty);
const Constant* c64 = Constant::getNullValue(V8x64Ty);
const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
V2Int32PtrAS1Ty,
true));
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Test mismatched number of elements for pointers
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V4Int32PtrTy),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V4Int32PtrAS1Ty),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrAS1Ty));
// Check that assertion is not hit when creating a cast with a vector of
// pointers
// First form
BasicBlock *BB = BasicBlock::Create(C);
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
// Second form
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
TEST(InstructionsTest, VectorGep) {
LLVMContext &C(getGlobalContext());
// Type Definitions
PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0);
PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 32), 0);
VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
// Test different aspects of the vector-of-pointers type
// and GEPs which use this type.
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
std::vector<Constant*> ConstVa(2, Ci32a);
std::vector<Constant*> ConstVb(2, Ci32b);
Constant *C2xi32a = ConstantVector::get(ConstVa);
Constant *C2xi32b = ConstantVector::get(ConstVb);
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
BasicBlock* BB0 = BasicBlock::Create(C);
// Test InsertAtEnd ICmpInst constructor.
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a);
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b);
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a);
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b);
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
Value *S0 = BTC0->stripPointerCasts();
Value *S1 = BTC1->stripPointerCasts();
Value *S2 = BTC2->stripPointerCasts();
Value *S3 = BTC3->stripPointerCasts();
EXPECT_NE(S0, Gep0);
EXPECT_NE(S1, Gep1);
EXPECT_NE(S2, Gep2);
EXPECT_NE(S3, Gep3);
int64_t Offset;
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
GetPointerBaseWithConstantOffset(Gep0, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep1, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep2, Offset, &TD);
GetPointerBaseWithConstantOffset(Gep3, Offset, &TD);
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Gep of Geps
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b);
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a);
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b);
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a);
EXPECT_EQ(GepII0->getNumIndices(), 1u);
EXPECT_EQ(GepII1->getNumIndices(), 1u);
EXPECT_EQ(GepII2->getNumIndices(), 1u);
EXPECT_EQ(GepII3->getNumIndices(), 1u);
EXPECT_FALSE(GepII0->hasAllZeroIndices());
EXPECT_FALSE(GepII1->hasAllZeroIndices());
EXPECT_FALSE(GepII2->hasAllZeroIndices());
EXPECT_FALSE(GepII3->hasAllZeroIndices());
delete GepII0;
delete GepII1;
delete GepII2;
delete GepII3;
delete BTC0;
delete BTC1;
delete BTC2;
delete BTC3;
delete Gep0;
delete Gep1;
delete Gep2;
delete Gep3;
delete ICmp0;
delete ICmp1;
delete PtrVecA;
delete PtrVecB;
}
Duncan Sands
committed
TEST(InstructionsTest, FPMathOperator) {
LLVMContext &Context = getGlobalContext();
IRBuilder<> Builder(Context);
MDBuilder MDHelper(Context);
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
MDNode *MD1 = MDHelper.createFPMath(1.0);
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
EXPECT_TRUE(isa<FPMathOperator>(V1));
FPMathOperator *O1 = cast<FPMathOperator>(V1);
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
delete V1;
delete I;
}
TEST(InstructionsTest, isEliminableCastPair) {
LLVMContext &C(getGlobalContext());
Type* Int16Ty = Type::getInt16Ty(C);
Type* Int32Ty = Type::getInt32Ty(C);
Type* Int64Ty = Type::getInt64Ty(C);
Type* Int64PtrTy = Type::getInt64PtrTy(C);
// Source and destination pointers have same size -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
Int32Ty, 0, Int32Ty),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is the maximum pointer size -> bitcast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
0, 0, 0),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is not the maximum pointer size -> nothing
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int32Ty, Int64PtrTy,
0, 0, 0),
0U);
// Middle pointer big enough -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
0, Int64Ty, 0),
CastInst::BitCast);
// Middle pointer too small -> fail.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
0, Int32Ty, 0),
0U);
// Test that we don't eliminate bitcasts between different address spaces,
// or if we don't have available pointer size information.
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
"-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
// Cannot simplify inttoptr, addrspacecast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
// Cannot simplify addrspacecast, ptrtoint
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
Int64SizePtr, Int16SizePtr, 0),
0U);
// Pass since the bitcast address spaces are the same
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
0, 0, 0),
CastInst::IntToPtr);
}
} // end anonymous namespace
} // end namespace llvm