Newer
Older
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
Statistic<> NumSpills("spiller", "Number of register spills");
Statistic<> NumStores("spiller", "Number of stores added");
Statistic<> NumLoads ("spiller", "Number of loads added");
Statistic<> NumReused("spiller", "Number of values reused");
enum SpillerName { simple, local };
cl::opt<SpillerName>
SpillerOpt("spiller",
cl::desc("Spiller to use: (default: local)"),
cl::Prefix,
cl::values(clEnumVal(simple, " simple spiller"),
clEnumVal(local, " local spiller"),
clEnumValEnd),
cl::init(local));
}
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
void VirtRegMap::grow() {
Chris Lattner
committed
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
Chris Lattner
committed
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
Chris Lattner
committed
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
Virt2StackSlotMap[virtReg] = frameIndex;
++NumSpills;
return frameIndex;
}
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
assert(MRegisterInfo::isVirtualRegister(virtReg));
Chris Lattner
committed
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
Chris Lattner
committed
Virt2StackSlotMap[virtReg] = frameIndex;
}
void VirtRegMap::virtFolded(unsigned virtReg,
MachineInstr* oldMI,
MachineInstr* newMI) {
// move previous memory references folded to new instruction
Chris Lattner
committed
std::vector<MI2VirtMapTy::mapped_type> regs;
for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(oldMI),
E = MI2VirtMap.end(); I != E && I->first == oldMI; ) {
regs.push_back(I->second);
MI2VirtMap.erase(I++);
}
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(newMI);
for (unsigned i = 0, e = regs.size(); i != e; ++i)
MI2VirtMap.insert(IP, std::make_pair(newMI, regs[i]));
// add new memory reference
MI2VirtMap.insert(IP, std::make_pair(newMI, virtReg));
}
Chris Lattner
committed
void VirtRegMap::print(std::ostream &OS) const {
const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
Chris Lattner
committed
OS << "********** REGISTER MAP **********\n";
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
Chris Lattner
committed
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
}
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
Chris Lattner
committed
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
OS << '\n';
}
void VirtRegMap::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//
Alkis Evlogimenos
committed
Spiller::~Spiller() {}
Alkis Evlogimenos
committed
namespace {
struct SimpleSpiller : public Spiller {
bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
};
}
bool SimpleSpiller::runOnMachineFunction(MachineFunction& MF,
const VirtRegMap& VRM) {
DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
DEBUG(std::cerr << "********** Function: "
<< MF.getFunction()->getName() << '\n');
const TargetMachine& TM = MF.getTarget();
Chris Lattner
committed
const MRegisterInfo& MRI = *TM.getRegisterInfo();
Chris Lattner
committed
// LoadedRegs - Keep track of which vregs are loaded, so that we only load
// each vreg once (in the case where a spilled vreg is used by multiple
// operands). This is always smaller than the number of operands to the
// current machine instr, so it should be small.
std::vector<unsigned> LoadedRegs;
for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::iterator MII = MBB.begin(),
E = MBB.end(); MII != E; ++MII) {
MachineInstr &MI = *MII;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned VirtReg = MO.getReg();
unsigned PhysReg = VRM.getPhys(VirtReg);
if (VRM.hasStackSlot(VirtReg)) {
Chris Lattner
committed
int StackSlot = VRM.getStackSlot(VirtReg);
if (MO.isUse() &&
std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
== LoadedRegs.end()) {
MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
LoadedRegs.push_back(VirtReg);
++NumLoads;
Chris Lattner
committed
DEBUG(std::cerr << '\t' << *prior(MII));
}
if (MO.isDef()) {
MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
++NumStores;
}
}
MI.SetMachineOperandReg(i, PhysReg);
}
Chris Lattner
committed
DEBUG(std::cerr << '\t' << MI);
Chris Lattner
committed
LoadedRegs.clear();
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Local Spiller Implementation
//===----------------------------------------------------------------------===//
namespace {
/// LocalSpiller - This spiller does a simple pass over the machine basic
/// block to attempt to keep spills in registers as much as possible for
/// blocks that have low register pressure (the vreg may be spilled due to
/// register pressure in other blocks).
class LocalSpiller : public Spiller {
const MRegisterInfo *MRI;
const TargetInstrInfo *TII;
public:
bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
MRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n");
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB)
RewriteMBB(*MBB, VRM);
return true;
}
private:
void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
std::map<unsigned, int> &PhysRegs);
void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
std::map<unsigned, int> &PhysRegs);
};
}
void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
std::map<int, unsigned> &SpillSlots,
std::map<unsigned, int> &PhysRegs) {
std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
if (I != PhysRegs.end()) {
int Slot = I->second;
PhysRegs.erase(I);
assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
SpillSlots.erase(Slot);
DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
<< " clobbered, invalidating SS#" << Slot << "\n");
}
}
void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
std::map<int, unsigned> &SpillSlots,
std::map<unsigned, int> &PhysRegs) {
for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
}
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand. See comments below.
namespace {
struct ReusedOp {
// The MachineInstr operand that reused an available value.
unsigned Operand;
// StackSlot - The spill slot of the value being reused.
unsigned StackSlot;
// PhysRegReused - The physical register the value was available in.
unsigned PhysRegReused;
// AssignedPhysReg - The physreg that was assigned for use by the reload.
unsigned AssignedPhysReg;
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr)
: Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr) {}
};
}
/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them. If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
// SpillSlotsAvailable - This map keeps track of all of the spilled virtual
// register values that are still available, due to being loaded to stored to,
// but not invalidated yet.
std::map<int, unsigned> SpillSlotsAvailable;
// PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
// which physregs are in use holding a stack slot value.
std::map<unsigned, int> PhysRegsAvailable;
DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
std::vector<ReusedOp> ReusedOperands;
// DefAndUseVReg - When we see a def&use operand that is spilled, keep track
// of it. ".first" is the machine operand index (should always be 0 for now),
// and ".second" is the virtual register that is spilled.
std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
MII != E; ) {
MachineInstr &MI = *MII;
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
ReusedOperands.clear();
DefAndUseVReg.clear();
// Process all of the spilled uses and all non spilled reg references.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned VirtReg = MO.getReg();
if (!VRM.hasStackSlot(VirtReg)) {
// This virtual register was assigned a physreg!
MI.SetMachineOperandReg(i, VRM.getPhys(VirtReg));
} else {
// Is this virtual register a spilled value?
if (MO.isUse()) {
int StackSlot = VRM.getStackSlot(VirtReg);
unsigned PhysReg;
// Check to see if this stack slot is available.
std::map<int, unsigned>::iterator SSI =
SpillSlotsAvailable.find(StackSlot);
if (SSI != SpillSlotsAvailable.end()) {
// If this stack slot value is already available, reuse it!
PhysReg = SSI->second;
MI.SetMachineOperandReg(i, PhysReg);
DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
<< MRI->getName(SSI->second) << "\n");
// The only technical detail we have is that we don't know that
// PhysReg won't be clobbered by a reloaded stack slot that occurs
// later in the instruction. In particular, consider 'op V1, V2'.
// If V1 is available in physreg R0, we would choose to reuse it
// here, instead of reloading it into the register the allocator
// indicated (say R1). However, V2 might have to be reloaded
// later, and it might indicate that it needs to live in R0. When
// this occurs, we need to have information available that
// indicates it is safe to use R1 for the reload instead of R0.
//
// To further complicate matters, we might conflict with an alias,
// or R0 and R1 might not be compatible with each other. In this
// case, we actually insert a reload for V1 in R1, ensuring that
// we can get at R0 or its alias.
ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
VRM.getPhys(VirtReg)));
++NumReused;
} else {
// Otherwise, reload it and remember that we have it.
PhysReg = VRM.getPhys(VirtReg);
// Note that, if we reused a register for a previous operand, the
// register we want to reload into might not actually be
// available. If this occurs, use the register indicated by the
// reuser.
if (!ReusedOperands.empty()) // This is most often empty.
for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
if (ReusedOperands[ro].PhysRegReused == PhysReg) {
// Yup, use the reload register that we didn't use before.
PhysReg = ReusedOperands[ro].AssignedPhysReg;
break;
} else {
ReusedOp &Op = ReusedOperands[ro];
unsigned PRRU = Op.PhysRegReused;
for (const unsigned *AS = MRI->getAliasSet(PRRU); *AS; ++AS)
if (*AS == PhysReg) {
// Okay, we found out that an alias of a reused register
// was used. This isn't good because it means we have
// to undo a previous reuse.
MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
Op.StackSlot);
ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
PhysRegsAvailable);
MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
PhysRegsAvailable.erase(Op.PhysRegReused);
DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
<< " in physreg "
<< MRI->getName(Op.AssignedPhysReg) << "\n");
++NumLoads;
DEBUG(std::cerr << '\t' << *prior(MII));
DEBUG(std::cerr << "Reuse undone!\n");
ReusedOperands.erase(ReusedOperands.begin()+ro);
--NumReused;
goto ContinueReload;
}
}
ContinueReload:
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
// This invalidates PhysReg.
ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
MI.SetMachineOperandReg(i, PhysReg);
PhysRegsAvailable[PhysReg] = StackSlot;
SpillSlotsAvailable[StackSlot] = PhysReg;
DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
<< MRI->getName(PhysReg) << "\n");
++NumLoads;
DEBUG(std::cerr << '\t' << *prior(MII));
}
// If this is both a def and a use, we need to emit a store to the
// stack slot after the instruction. Keep track of D&U operands
// because we already changed it to a physreg here.
if (MO.isDef()) {
// Remember that this was a def-and-use operand, and that the
// stack slot is live after this instruction executes.
DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
}
}
}
}
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// Loop over all of the implicit defs, clearing them from our available
// sets.
const TargetInstrDescriptor &InstrDesc = TII->get(MI.getOpcode());
for (const unsigned* ImpDef = InstrDesc.ImplicitDefs; *ImpDef; ++ImpDef)
ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
DEBUG(std::cerr << '\t' << MI);
// If we have folded references to memory operands, make sure we clear all
// physical registers that may contain the value of the spilled virtual
// register
VirtRegMap::MI2VirtMapTy::const_iterator I, E;
for (tie(I, E) = VRM.getFoldedVirts(&MI); I != E; ++I) {
DEBUG(std::cerr << "Folded vreg: " << I->second);
if (VRM.hasStackSlot(I->second)) {
int SS = VRM.getStackSlot(I->second);
DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
std::map<int, unsigned>::iterator I = SpillSlotsAvailable.find(SS);
if (I != SpillSlotsAvailable.end()) {
PhysRegsAvailable.erase(I->second);
SpillSlotsAvailable.erase(I);
}
} else {
DEBUG(std::cerr << ": No stack slot!\n");
}
}
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
// Process all of the spilled defs.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegister() && MO.getReg() && MO.isDef()) {
unsigned VirtReg = MO.getReg();
bool TakenCareOf = false;
if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
// Check to see if this is a def-and-use vreg operand that we do need
// to insert a store for.
bool OpTakenCareOf = false;
if (MO.isUse() && !DefAndUseVReg.empty()) {
for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
if (DefAndUseVReg[dau].first == i) {
VirtReg = DefAndUseVReg[dau].second;
OpTakenCareOf = true;
break;
}
}
if (!OpTakenCareOf) {
ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
TakenCareOf = true;
}
}
if (!TakenCareOf) {
// The only vregs left are stack slot definitions.
int StackSlot = VRM.getStackSlot(VirtReg);
unsigned PhysReg;
// If this is a def&use operand, and we used a different physreg for
// it than the one assigned, make sure to execute the store from the
// correct physical register.
if (MO.getReg() == VirtReg)
PhysReg = VRM.getPhys(VirtReg);
else
PhysReg = MO.getReg();
MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
DEBUG(std::cerr << "Store:\t" << *next(MII));
MI.SetMachineOperandReg(i, PhysReg);
// If the stack slot value was previously available in some other
// register, change it now. Otherwise, make the register available,
// in PhysReg.
std::map<int, unsigned>::iterator SSA =
SpillSlotsAvailable.find(StackSlot);
if (SSA != SpillSlotsAvailable.end()) {
// Remove the record for physreg.
PhysRegsAvailable.erase(SSA->second);
SpillSlotsAvailable.erase(SSA);
}
ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
PhysRegsAvailable[PhysReg] = StackSlot;
SpillSlotsAvailable[StackSlot] = PhysReg;
DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
<< MRI->getName(PhysReg) << "\n");
++NumStores;
VirtReg = PhysReg;
}
}
MII = NextMII;
}
llvm::Spiller* llvm::createSpiller() {
switch (SpillerOpt) {
default: assert(0 && "Unreachable!");
case local:
return new LocalSpiller();
case simple:
return new SimpleSpiller();
}