Skip to content
LiveIntervalAnalysis.cpp 29.8 KiB
Newer Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
Jeff Cohen's avatar
Jeff Cohen committed
#include <cmath>
namespace {
  // Hidden options for help debugging.
  cl::opt<bool> DisableReMat("disable-rematerialization", 
                              cl::init(false), cl::Hidden);
}

STATISTIC(numIntervals, "Number of original intervals");
STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
STATISTIC(numFolded   , "Number of loads/stores folded into instructions");

Devang Patel's avatar
Devang Patel committed
char LiveIntervals::ID = 0;
  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addPreserved<LiveVariables>();
  AU.addRequired<LiveVariables>();
  AU.addPreservedID(PHIEliminationID);
  AU.addRequiredID(PHIEliminationID);
  AU.addRequiredID(TwoAddressInstructionPassID);
  AU.addRequired<LoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
void LiveIntervals::releaseMemory() {
  mi2iMap_.clear();
  i2miMap_.clear();
  r2iMap_.clear();
Evan Cheng's avatar
Evan Cheng committed
  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
  VNInfoAllocator.Reset();
  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
    delete ClonedMIs[i];
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  lv_ = &getAnalysis<LiveVariables>();
  allocatableRegs_ = mri_->getAllocatableSet(fn);
  // Number MachineInstrs and MachineBasicBlocks.
  // Initialize MBB indexes to a sentinal.
  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
  
  unsigned MIIndex = 0;
  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
       MBB != E; ++MBB) {
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         I != E; ++I) {
      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
      assert(inserted && "multiple MachineInstr -> index mappings");
      i2miMap_.push_back(I);
      MIIndex += InstrSlots::NUM;

    // Set the MBB2IdxMap entry for this MBB.
    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
  computeIntervals();
  numIntervals += getNumIntervals();
  DOUT << "********** INTERVALS **********\n";
  for (iterator I = begin(), E = end(); I != E; ++I) {
    I->second.print(DOUT, mri_);
    DOUT << "\n";
  }
  numIntervalsAfter += getNumIntervals();
  DEBUG(dump());
  return true;
/// print - Implement the dump method.
Reid Spencer's avatar
Reid Spencer committed
void LiveIntervals::print(std::ostream &O, const Module* ) const {
  O << "********** INTERVALS **********\n";
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    I->second.print(DOUT, mri_);
    DOUT << "\n";

  O << "********** MACHINEINSTRS **********\n";
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
           mie = mbbi->end(); mii != mie; ++mii) {
      O << getInstructionIndex(mii) << '\t' << *mii;
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       const VNInfo *ValNo, MachineInstr *MI) {
  if (tii_->isTriviallyReMaterializable(MI))
    return true;

  int FrameIdx = 0;
  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
    return false;

  // This is a load from fixed stack slot. It can be rematerialized unless it's
  // re-defined by a two-address instruction.
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    if (VNI == ValNo)
    if (DefIdx == ~1U)
      continue; // Dead val#.
    MachineInstr *DefMI = (DefIdx == ~0u)
      ? NULL : getInstructionFromIndex(DefIdx);
    if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
/// slot / to reg or any rematerialized load into ith operand of specified
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
  MachineInstr *fmi = isSS
    ? mri_->foldMemoryOperand(MI, i, slot)
    : mri_->foldMemoryOperand(MI, i, DefMI);
  if (fmi) {
    // Attempt to fold the memory reference into the instruction. If
    // we can do this, we don't need to insert spill code.
    if (lv_)
      lv_->instructionChanged(MI, fmi);
    MachineBasicBlock &MBB = *MI->getParent();
    vrm.virtFolded(reg, MI, i, fmi);
    mi2iMap_.erase(MI);
    i2miMap_[index/InstrSlots::NUM] = fmi;
    mi2iMap_[fmi] = index;
    MI = MBB.insert(MBB.erase(MI), fmi);
    ++numFolded;
    return true;
  }
  return false;
}

std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
  // since this is called after the analysis is done we don't know if
  // LiveVariables is available
  lv_ = getAnalysisToUpdate<LiveVariables>();

  std::vector<LiveInterval*> added;

  assert(li.weight != HUGE_VALF &&
         "attempt to spill already spilled interval!");

  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
  li.print(DOUT, mri_);
  DOUT << '\n';
  SSARegMap *RegMap = mf_->getSSARegMap();
  const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
  unsigned NumValNums = li.getNumValNums();
  SmallVector<MachineInstr*, 4> ReMatDefs;
  ReMatDefs.resize(NumValNums, NULL);
  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
  ReMatOrigDefs.resize(NumValNums, NULL);
  SmallVector<int, 4> ReMatIds;
  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
  BitVector ReMatDelete(NumValNums);
  unsigned slot = VirtRegMap::MAX_STACK_SLOT;

  bool NeedStackSlot = false;
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    unsigned VN = VNI->id;
    unsigned DefIdx = VNI->def;
    if (DefIdx == ~1U)
      continue; // Dead val#.
    // Is the def for the val# rematerializable?
    MachineInstr *DefMI = (DefIdx == ~0u)
      ? NULL : getInstructionFromIndex(DefIdx);
    if (DefMI && isReMaterializable(li, VNI, DefMI)) {
      // Remember how to remat the def of this val#.
      // Original def may be modified so we have to make a copy here. vrm must
      // delete these!
      ReMatDefs[VN] = DefMI = DefMI->clone();
      vrm.setVirtIsReMaterialized(reg, DefMI);

      bool CanDelete = true;
      for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
        unsigned KillIdx = VNI->kills[j];
        MachineInstr *KillMI = (KillIdx & 1)
          ? NULL : getInstructionFromIndex(KillIdx);
        // Kill is a phi node, not all of its uses can be rematerialized.
        // It must not be deleted.
        if (!KillMI) {
          CanDelete = false;
          // Need a stack slot if there is any live range where uses cannot be
          // rematerialized.
          NeedStackSlot = true;
          break;
        }
      }

      if (CanDelete)
    } else {
      // Need a stack slot if there is any live range where uses cannot be
      // rematerialized.
      NeedStackSlot = true;
    }
  }

  // One stack slot per live interval.
  if (NeedStackSlot)
    slot = vrm.assignVirt2StackSlot(reg);

  for (LiveInterval::Ranges::const_iterator
         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
    MachineInstr *DefMI = ReMatDefs[I->valno->id];
    MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
    bool CanDelete = ReMatDelete[I->valno->id];
    int LdSlot = 0;
    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
    bool isLoad = isLoadSS ||
      (DefIsReMat && (DefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
    unsigned index = getBaseIndex(I->start);
    unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
    for (; index != end; index += InstrSlots::NUM) {
      // skip deleted instructions
      while (index != end && !getInstructionFromIndex(index))
        index += InstrSlots::NUM;
      if (index == end) break;

      MachineInstr *MI = getInstructionFromIndex(index);
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
        MachineOperand& mop = MI->getOperand(i);
        if (!mop.isRegister())
          continue;
        unsigned Reg = mop.getReg();
        if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
          continue;
        bool isSubReg = RegMap->isSubRegister(Reg);
        unsigned SubIdx = 0;
        if (isSubReg) {
          SubIdx = RegMap->getSubRegisterIndex(Reg);
          Reg = RegMap->getSuperRegister(Reg);
        }
        if (Reg != li.reg)
          continue;

        bool TryFold = !DefIsReMat;
        bool FoldSS = true;
        int FoldSlot = slot;
        if (DefIsReMat) {
          // If this is the rematerializable definition MI itself and
          // all of its uses are rematerialized, simply delete it.
          if (MI == OrigDefMI && CanDelete) {
            RemoveMachineInstrFromMaps(MI);
            MI->eraseFromParent();
            break;
          // If def for this use can't be rematerialized, then try folding.
          TryFold = !OrigDefMI || (OrigDefMI && (MI == OrigDefMI || isLoad));
          if (isLoad) {
            // Try fold loads (from stack slot, constant pool, etc.) into uses.
            FoldSS = isLoadSS;
            FoldSlot = LdSlot;
          }
        }

        // FIXME: fold subreg use
        if (!isSubReg && TryFold &&
            tryFoldMemoryOperand(MI, vrm, DefMI, index, i, FoldSS, FoldSlot, Reg))
          // Folding the load/store can completely change the instruction in
          // unpredictable ways, rescan it from the beginning.
          goto RestartInstruction;

        // Create a new virtual register for the spill interval.
        unsigned NewVReg = RegMap->createVirtualRegister(rc);
        if (isSubReg)
          RegMap->setIsSubRegister(NewVReg, NewVReg, SubIdx);
        // Scan all of the operands of this instruction rewriting operands
        // to use NewVReg instead of li.reg as appropriate.  We do this for
        // two reasons:
        //
        //   1. If the instr reads the same spilled vreg multiple times, we
        //      want to reuse the NewVReg.
        //   2. If the instr is a two-addr instruction, we are required to
        //      keep the src/dst regs pinned.
        //
        // Keep track of whether we replace a use and/or def so that we can
        // create the spill interval with the appropriate range. 
        mop.setReg(NewVReg);
        bool HasUse = mop.isUse();
        bool HasDef = mop.isDef();
        for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
          if (MI->getOperand(j).isRegister() &&
              MI->getOperand(j).getReg() == li.reg) {
            MI->getOperand(j).setReg(NewVReg);
            HasUse |= MI->getOperand(j).isUse();
            HasDef |= MI->getOperand(j).isDef();
        vrm.grow();
        if (DefIsReMat) {
          vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
          if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
            // Each valnum may have its own remat id.
            ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
            vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
          }
          if (!CanDelete || (HasUse && HasDef)) {
            // If this is a two-addr instruction then its use operands are
            // rematerializable but its def is not. It should be assigned a
            // stack slot.
            vrm.assignVirt2StackSlot(NewVReg, slot);
          }
        } else {
          vrm.assignVirt2StackSlot(NewVReg, slot);
        }
        // create a new register interval for this spill / remat.
        LiveInterval &nI = getOrCreateInterval(NewVReg);
        assert(nI.empty());
        // the spill weight is now infinity as it
        // cannot be spilled again
        nI.weight = HUGE_VALF;
        if (HasUse) {
          LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
                       nI.getNextValue(~0U, 0, VNInfoAllocator));
          DOUT << " +" << LR;
          nI.addRange(LR);
        }
        if (HasDef) {
          LiveRange LR(getDefIndex(index), getStoreIndex(index),
                       nI.getNextValue(~0U, 0, VNInfoAllocator));
          DOUT << " +" << LR;
          nI.addRange(LR);
        }
        // update live variables if it is available
        if (lv_)
          lv_->addVirtualRegisterKilled(NewVReg, MI);
        DOUT << "\t\t\t\tadded new interval: ";
        nI.print(DOUT, mri_);
        DOUT << '\n';
  return added;
void LiveIntervals::printRegName(unsigned reg) const {
  if (MRegisterInfo::isPhysicalRegister(reg))
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);

Alkis Evlogimenos's avatar
Alkis Evlogimenos committed
  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  if (interval.empty()) {
    // Get the Idx of the defining instructions.
    unsigned defIndex = getDefIndex(MIIdx);
    if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
      ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
    else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
             mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
      ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
                                    VNInfoAllocator);
    else
      ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);

    assert(ValNo->id == 0 && "First value in interval is not 0?");

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      unsigned killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
      else
        killIdx = defIndex+1;

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.none() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNo);
        interval.addRange(LR);
        DOUT << " +" << LR << "\n";
    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex,
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
    interval.addRange(NewLR);

    // Iterate over all of the blocks that the variable is completely
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
    // live interval.
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
      if (vi.AliveBlocks[i]) {
        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
        if (!MBB->empty()) {
          LiveRange LR(getMBBStartIdx(i),
                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
          interval.addRange(LR);
        }
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
      LiveRange LR(getMBBStartIdx(Kill->getParent()),
      interval.addRange(LR);
    }

  } else {
    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is one of the
    // def-and-use register operand.
    if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
      unsigned RedefIndex = getDefIndex(MIIdx);
      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
      // Delete the initial value, which should be short and continuous,
      // because the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);
      // Two-address vregs should always only be redefined once.  This means
      // that at this point, there should be exactly one value number in it.
      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");

      // The new value number (#1) is defined by the instruction we claimed
      // defined value #0.
      VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
      interval.copyValNumInfo(ValNo, OldValNo);
      // Value#0 is now defined by the 2-addr instruction.
      OldValNo->def = RedefIndex;
      OldValNo->reg = 0;
      
      // Add the new live interval which replaces the range for the input copy.
      LiveRange LR(DefIndex, RedefIndex, ValNo);
      DOUT << " replace range with " << LR;
      interval.addRange(LR);
      interval.addKill(ValNo, RedefIndex);
      interval.removeKills(ValNo, RedefIndex, OldEnd);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      if (lv_->RegisterDefIsDead(mi, interval.reg))
        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
Evan Cheng's avatar
Evan Cheng committed
      DOUT << " RESULT: ";
      interval.print(DOUT, mri_);

    } else {
      // Otherwise, this must be because of phi elimination.  If this is the
      // first redefinition of the vreg that we have seen, go back and change
      // the live range in the PHI block to be a different value number.
      if (interval.containsOneValue()) {
        assert(vi.Kills.size() == 1 &&
               "PHI elimination vreg should have one kill, the PHI itself!");

        // Remove the old range that we now know has an incorrect number.
        VNInfo *VNI = interval.getValNumInfo(0);
        MachineInstr *Killer = vi.Kills[0];
        unsigned Start = getMBBStartIdx(Killer->getParent());
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
Evan Cheng's avatar
Evan Cheng committed
        DOUT << " Removing [" << Start << "," << End << "] from: ";
        interval.print(DOUT, mri_); DOUT << "\n";
        interval.removeRange(Start, End);
        interval.addKill(VNI, Start+1); // odd # means phi node
Evan Cheng's avatar
Evan Cheng committed
        DOUT << " RESULT: "; interval.print(DOUT, mri_);
        // Replace the interval with one of a NEW value number.  Note that this
        // value number isn't actually defined by an instruction, weird huh? :)
        LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
        DOUT << " replace range with " << LR;
        interval.addRange(LR);
Evan Cheng's avatar
Evan Cheng committed
        DOUT << " RESULT: "; interval.print(DOUT, mri_);
      }

      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.
      unsigned defIndex = getDefIndex(MIIdx);
      if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
        ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
      else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
        ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
                                      VNInfoAllocator);
      else
        ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
Evan Cheng's avatar
Evan Cheng committed
      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
      LiveRange LR(defIndex, killIndex, ValNo);
      interval.addRange(LR);
      interval.addKill(ValNo, killIndex-1); // odd # means phi node
Chris Lattner's avatar
Chris Lattner committed
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
  // A physical register cannot be live across basic block, so its
  // lifetime must end somewhere in its defining basic block.
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
  unsigned start = getDefIndex(baseIndex);
  unsigned end = start;

  // If it is not used after definition, it is considered dead at
  // the instruction defining it. Hence its interval is:
  // [defSlot(def), defSlot(def)+1)
  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
    end = getDefIndex(start) + 1;
    goto exit;
  // If it is not dead on definition, it must be killed by a
  // subsequent instruction. Hence its interval is:
  // [defSlot(def), useSlot(kill)+1)
  while (++mi != MBB->end()) {
    baseIndex += InstrSlots::NUM;
    if (lv_->KillsRegister(mi, interval.reg)) {
      end = getUseIndex(baseIndex) + 1;
      goto exit;
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
      // Another instruction redefines the register before it is ever read.
      // Then the register is essentially dead at the instruction that defines
      // it. Hence its interval is:
      // [defSlot(def), defSlot(def)+1)
Chris Lattner's avatar
Chris Lattner committed
    }
  
  // The only case we should have a dead physreg here without a killing or
  // instruction where we know it's dead is if it is live-in to the function
  // and never used.
  assert(!SrcReg && "physreg was not killed in defining block!");
  end = getDefIndex(start) + 1;  // It's dead.
  assert(start < end && "did not find end of interval?");
Evan Cheng's avatar
Evan Cheng committed
  // Already exists? Extend old live interval.
  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
  VNInfo *ValNo = (OldLR != interval.end())
    ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
  interval.addRange(LR);
  DOUT << " +" << LR << '\n';
Chris Lattner's avatar
Chris Lattner committed
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
Chris Lattner's avatar
Chris Lattner committed
                                      unsigned reg) {
  if (MRegisterInfo::isVirtualRegister(reg))
    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
  else if (allocatableRegs_[reg]) {
    if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
      SrcReg = MI->getOperand(1).getReg();
    else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
Evan Cheng's avatar
Evan Cheng committed
    // Def of a register also defines its sub-registers.
    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
      // Avoid processing some defs more than once.
      if (!MI->findRegisterDefOperand(*AS))
        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
Chris Lattner's avatar
Chris Lattner committed
  }
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
Evan Cheng's avatar
Evan Cheng committed
                                         LiveInterval &interval, bool isAlias) {
  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));

  // Look for kills, if it reaches a def before it's killed, then it shouldn't
  // be considered a livein.
  MachineBasicBlock::iterator mi = MBB->begin();
  unsigned baseIndex = MIIdx;
  unsigned start = baseIndex;
  unsigned end = start;
  while (mi != MBB->end()) {
    if (lv_->KillsRegister(mi, interval.reg)) {
      DOUT << " killed";
      end = getUseIndex(baseIndex) + 1;
      goto exit;
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
      // Another instruction redefines the register before it is ever read.
      // Then the register is essentially dead at the instruction that defines
      // it. Hence its interval is:
      // [defSlot(def), defSlot(def)+1)
      DOUT << " dead";
      end = getDefIndex(start) + 1;
      goto exit;
    }

    baseIndex += InstrSlots::NUM;
    ++mi;
  }

exit:
  // Live-in register might not be used at all.
  if (end == MIIdx) {
    if (isAlias) {
      DOUT << " dead";
      end = getDefIndex(MIIdx) + 1;
    } else {
      DOUT << " live through";
      end = baseIndex;
    }
Evan Cheng's avatar
Evan Cheng committed
  }

  LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
  interval.addRange(LR);
Evan Cheng's avatar
Evan Cheng committed
  DOUT << " +" << LR << '\n';
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
void LiveIntervals::computeIntervals() {
  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
       << "********** Function: "
       << ((Value*)mf_->getFunction())->getName() << '\n';
  // Track the index of the current machine instr.
  unsigned MIIndex = 0;
  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
    // Create intervals for live-ins to this BB first.
    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
           LE = MBB->livein_end(); LI != LE; ++LI) {
      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
      // Multiple live-ins can alias the same register.
      for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
        if (!hasInterval(*AS))
          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
                               true);
      DOUT << MIIndex << "\t" << *MI;
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand &MO = MI->getOperand(i);
        // handle register defs - build intervals
        if (MO.isRegister() && MO.getReg() && MO.isDef())
          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
LiveInterval LiveIntervals::createInterval(unsigned reg) {
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
                       HUGE_VALF : 0.0F;
  return LiveInterval(reg, Weight);