Skip to content
X86InstrSSE.td 117 KiB
Newer Older
//====- X86InstrSSE.td - Describe the X86 Instruction Set -------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the University
// of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
                                            SDTCisFP<0>, SDTCisInt<2> ]>;

Chris Lattner's avatar
Chris Lattner committed
def X86loadp   : SDNode<"X86ISD::LOAD_PACK", SDTLoad, [SDNPHasChain]>;
def X86loadu   : SDNode<"X86ISD::LOAD_UA",   SDTLoad, [SDNPHasChain]>;
def X86fmin    : SDNode<"X86ISD::FMIN",      SDTFPBinOp>;
def X86fmax    : SDNode<"X86ISD::FMAX",      SDTFPBinOp>;
def X86fand    : SDNode<"X86ISD::FAND",      SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86for     : SDNode<"X86ISD::FOR",       SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86fxor    : SDNode<"X86ISD::FXOR",      SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86fsrl    : SDNode<"X86ISD::FSRL",      SDTX86FPShiftOp>;
def X86comi    : SDNode<"X86ISD::COMI",      SDTX86CmpTest,
def X86ucomi   : SDNode<"X86ISD::UCOMI",     SDTX86CmpTest,
Chris Lattner's avatar
Chris Lattner committed
def X86s2vec   : SDNode<"X86ISD::S2VEC",  SDTypeProfile<1, 1, []>, []>;
def X86pextrw  : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, []>, []>;
def X86pinsrw  : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, []>, []>;
//===----------------------------------------------------------------------===//
// SSE 'Special' Instructions
//===----------------------------------------------------------------------===//

def IMPLICIT_DEF_VR128 : I<0, Pseudo, (ops VR128:$dst),
                           "#IMPLICIT_DEF $dst",
                           [(set VR128:$dst, (v4f32 (undef)))]>,
                         Requires<[HasSSE1]>;
def IMPLICIT_DEF_FR32  : I<0, Pseudo, (ops FR32:$dst),
                           "#IMPLICIT_DEF $dst",
                           [(set FR32:$dst, (undef))]>, Requires<[HasSSE2]>;
def IMPLICIT_DEF_FR64  : I<0, Pseudo, (ops FR64:$dst),
                           "#IMPLICIT_DEF $dst",
                           [(set FR64:$dst, (undef))]>, Requires<[HasSSE2]>;

//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//

// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements.  These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 4, "SelectScalarSSELoad", [],
                                  [SDNPHasChain]>;
def sse_load_f64 : ComplexPattern<v2f64, 4, "SelectScalarSSELoad", [],
                                  [SDNPHasChain]>;

def ssmem : Operand<v4f32> {
  let PrintMethod = "printf32mem";
  let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}
def sdmem : Operand<v2f64> {
  let PrintMethod = "printf64mem";
  let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}

//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//

def X86loadpf32  : PatFrag<(ops node:$ptr), (f32   (X86loadp node:$ptr))>;
def X86loadpf64  : PatFrag<(ops node:$ptr), (f64   (X86loadp node:$ptr))>;

def loadv4f32    : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64    : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv2i32    : PatFrag<(ops node:$ptr), (v2i32 (load node:$ptr))>;
def loadv2i64    : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
Evan Cheng's avatar
Evan Cheng committed
def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;

def fp32imm0 : PatLeaf<(f32 fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

Evan Cheng's avatar
Evan Cheng committed
def PSxLDQ_imm  : SDNodeXForm<imm, [{
  // Transformation function: imm >> 3
  return getI32Imm(N->getValue() >> 3);
}]>;

// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*,
// SHUFP* etc. imm.
def SHUFFLE_get_shuf_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShuffleSHUFImmediate(N));
// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to 
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;

// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to 
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;

def SSE_splat_mask : PatLeaf<(build_vector), [{
def SSE_splat_lo_mask : PatLeaf<(build_vector), [{
  return X86::isSplatLoMask(N);
def MOVHLPS_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHLPSMask(N);
def MOVHLPS_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHLPS_v_undef_Mask(N);
}]>;

def MOVHP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHPMask(N);
}]>;

def MOVLP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVLPMask(N);
}]>;

def MOVL_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVLMask(N);
Evan Cheng's avatar
Evan Cheng committed
def MOVSHDUP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVSHDUPMask(N);
}]>;

def MOVSLDUP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVSLDUPMask(N);
}]>;

def UNPCKL_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKLMask(N);
}]>;

def UNPCKH_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKHMask(N);
}]>;

def UNPCKL_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKL_v_undef_Mask(N);
}]>;

def UNPCKH_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKH_v_undef_Mask(N);
}]>;

def PSHUFD_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;
def PSHUFHW_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFHWMask(N);
}], SHUFFLE_get_pshufhw_imm>;

def PSHUFLW_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFLWMask(N);
}], SHUFFLE_get_pshuflw_imm>;

def SHUFP_unary_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;

def SHUFP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;
def PSHUFD_binary_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;

//===----------------------------------------------------------------------===//
// SSE scalar FP Instructions
//===----------------------------------------------------------------------===//
// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded by the
// scheduler into a branch sequence.
let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
  def CMOV_FR32 : I<0, Pseudo,
                    (ops FR32:$dst, FR32:$t, FR32:$f, i8imm:$cond),
                    "#CMOV_FR32 PSEUDO!",
                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond))]>;
  def CMOV_FR64 : I<0, Pseudo,
                    (ops FR64:$dst, FR64:$t, FR64:$f, i8imm:$cond),
                    "#CMOV_FR64 PSEUDO!",
                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond))]>;
  def CMOV_V4F32 : I<0, Pseudo,
                    (ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V4F32 PSEUDO!",
                    [(set VR128:$dst,
                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
  def CMOV_V2F64 : I<0, Pseudo,
                    (ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2F64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
  def CMOV_V2I64 : I<0, Pseudo,
                    (ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2I64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
//===----------------------------------------------------------------------===//
// SSE1 Instructions
//===----------------------------------------------------------------------===//

// SSE1 Instruction Templates:
// 
//   SSI   - SSE1 instructions with XS prefix.
//   PSI   - SSE1 instructions with TB prefix.
//   PSIi8 - SSE1 instructions with ImmT == Imm8 and TB prefix.

class SSI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : I<o, F, ops, asm, pattern>, XS, Requires<[HasSSE1]>;
class PSI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : I<o, F, ops, asm, pattern>, TB, Requires<[HasSSE1]>;
class PSIi8<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : Ii8<o, F, ops, asm, pattern>, TB, Requires<[HasSSE1]>;

// Helpers for defining instructions that directly correspond to intrinsics.
multiclass SS_IntUnary<bits<8> o, string OpcodeStr, Intrinsic IntId> {
  def r : SSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
              !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v4f32 (IntId VR128:$src)))]>;
  def m : SSI<o, MRMSrcMem, (ops VR128:$dst, ssmem:$src),
              !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v4f32 (IntId sse_load_f32:$src)))]>;
}

def MOVSSrr : SSI<0x10, MRMSrcReg, (ops FR32:$dst, FR32:$src),
                  "movss {$src, $dst|$dst, $src}", []>;
def MOVSSrm : SSI<0x10, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
                  "movss {$src, $dst|$dst, $src}",
                  [(set FR32:$dst, (loadf32 addr:$src))]>;
def MOVSSmr : SSI<0x11, MRMDestMem, (ops f32mem:$dst, FR32:$src),
                  "movss {$src, $dst|$dst, $src}",
                  [(store FR32:$src, addr:$dst)]>;
def SQRTSSr : SSI<0x51, MRMSrcReg, (ops FR32:$dst, FR32:$src),
                  "sqrtss {$src, $dst|$dst, $src}",
                  [(set FR32:$dst, (fsqrt FR32:$src))]>;
def SQRTSSm : SSI<0x51, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
                  "sqrtss {$src, $dst|$dst, $src}",
                  [(set FR32:$dst, (fsqrt (loadf32 addr:$src)))]>;

// Aliases to match intrinsics which expect XMM operand(s).
defm SQRTSS_Int  : SS_IntUnary<0x51, "sqrtss" , int_x86_sse_sqrt_ss>;
defm RSQRTSS_Int : SS_IntUnary<0x52, "rsqrtss", int_x86_sse_rsqrt_ss>;
defm RCPSS_Int   : SS_IntUnary<0x53, "rcpss"  , int_x86_sse_rcp_ss>;

// Conversion instructions
def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (ops GR32:$dst, FR32:$src),
                      "cvttss2si {$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
                      "cvttss2si {$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def CVTSI2SSrr  : SSI<0x2A, MRMSrcReg, (ops FR32:$dst, GR32:$src),
                      "cvtsi2ss {$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SSrm  : SSI<0x2A, MRMSrcMem, (ops FR32:$dst, i32mem:$src),
                      "cvtsi2ss {$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>;

// Match intrinsics which expect XMM operand(s).
def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                         "cvtss2si {$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>;
def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
                         "cvtss2si {$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse_cvtss2si
                                           (load addr:$src)))]>;

// Aliases for intrinsics
def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                          "cvttss2si {$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse_cvttss2si VR128:$src))]>;
def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
                          "cvttss2si {$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse_cvttss2si(load addr:$src)))]>;

let isTwoAddress = 1 in {
  def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg,
                           (ops VR128:$dst, VR128:$src1, GR32:$src2),
                           "cvtsi2ss {$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
                                              GR32:$src2))]>;
  def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem,
                           (ops VR128:$dst, VR128:$src1, i32mem:$src2),
                           "cvtsi2ss {$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
                                              (loadi32 addr:$src2)))]>;
}

// Comparison instructions
let isTwoAddress = 1 in {
  def CMPSSrr : SSI<0xC2, MRMSrcReg, 
                    (ops FR32:$dst, FR32:$src1, FR32:$src, SSECC:$cc),
                    "cmp${cc}ss {$src, $dst|$dst, $src}",
                    []>;
  def CMPSSrm : SSI<0xC2, MRMSrcMem, 
                    (ops FR32:$dst, FR32:$src1, f32mem:$src, SSECC:$cc),
                    "cmp${cc}ss {$src, $dst|$dst, $src}", []>;
}

def UCOMISSrr: PSI<0x2E, MRMSrcReg, (ops FR32:$src1, FR32:$src2),
                   "ucomiss {$src2, $src1|$src1, $src2}",
                   [(X86cmp FR32:$src1, FR32:$src2)]>;
def UCOMISSrm: PSI<0x2E, MRMSrcMem, (ops FR32:$src1, f32mem:$src2),
                   "ucomiss {$src2, $src1|$src1, $src2}",
                   [(X86cmp FR32:$src1, (loadf32 addr:$src2))]>;

// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
  def Int_CMPSSrr : SSI<0xC2, MRMSrcReg, 
                        (ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
                        "cmp${cc}ss {$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
                                           VR128:$src, imm:$cc))]>;
  def Int_CMPSSrm : SSI<0xC2, MRMSrcMem, 
                        (ops VR128:$dst, VR128:$src1, f32mem:$src, SSECC:$cc),
                        "cmp${cc}ss {$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
                                           (load addr:$src), imm:$cc))]>;
}

def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
                       "ucomiss {$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v4f32 VR128:$src1), VR128:$src2)]>;
def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
                       "ucomiss {$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v4f32 VR128:$src1), (load addr:$src2))]>;

def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
                      "comiss {$src2, $src1|$src1, $src2}",
                      [(X86comi (v4f32 VR128:$src1), VR128:$src2)]>;
def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
                      "comiss {$src2, $src1|$src1, $src2}",
                      [(X86comi (v4f32 VR128:$src1), (load addr:$src2))]>;

// Aliases of packed SSE1 instructions for scalar use. These all have names that
// start with 'Fs'.

// Alias instructions that map fld0 to pxor for sse.
def FsFLD0SS : I<0xEF, MRMInitReg, (ops FR32:$dst),
                 "pxor $dst, $dst", [(set FR32:$dst, fp32imm0)]>,
               Requires<[HasSSE1]>, TB, OpSize;

// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are
// disregarded.
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (ops FR32:$dst, FR32:$src),
                     "movaps {$src, $dst|$dst, $src}", []>;

// Alias instruction to load FR32 from f128mem using movaps. Upper bits are
// disregarded.
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (ops FR32:$dst, f128mem:$src),
                     "movaps {$src, $dst|$dst, $src}",
                     [(set FR32:$dst, (X86loadpf32 addr:$src))]>;

// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {

let isCommutable = 1 in {
  def FsANDPSrr : PSI<0x54, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
                      "andps {$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>;
  def FsORPSrr  : PSI<0x56, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
                      "orps {$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>;
  def FsXORPSrr : PSI<0x57, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
                      "xorps {$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>;
}

def FsANDPSrm : PSI<0x54, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
                    "andps {$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86fand FR32:$src1,
                                      (X86loadpf32 addr:$src2)))]>;
def FsORPSrm  : PSI<0x56, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
                    "orps {$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86for FR32:$src1,
                                      (X86loadpf32 addr:$src2)))]>;
def FsXORPSrm : PSI<0x57, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
                    "xorps {$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86fxor FR32:$src1,
                                      (X86loadpf32 addr:$src2)))]>;

def FsANDNPSrr : PSI<0x55, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
                     "andnps {$src2, $dst|$dst, $src2}", []>;
def FsANDNPSrm : PSI<0x55, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
                     "andnps {$src2, $dst|$dst, $src2}", []>;
}

/// scalar_sse1_fp_binop_rm - Scalar SSE1 binops come in three basic forms:
///  
///  1. f32 - This comes in SSE1 form for floats.
///  2. rr vs rm - They include a reg+reg form and a reg+mem form.
///
/// In addition, scalar SSE ops have an intrinsic form.  This form is unlike the
/// normal form, in that they take an entire vector (instead of a scalar) and
/// leave the top elements undefined.  This adds another two variants of the
/// above permutations, giving us 8 forms for 'instruction'.
///
let isTwoAddress = 1 in {
multiclass scalar_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
                                   SDNode OpNode, Intrinsic F32Int,
                                   bit Commutable = 0> {
  def SSrr : SSI<opc, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
Chris Lattner's avatar
Chris Lattner committed
               !strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
               [(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
    let isCommutable = Commutable;
  }
  def SSrm : SSI<opc, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
Chris Lattner's avatar
Chris Lattner committed
                 !strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
                 [(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
                 
  // Vector intrinsic operation, reg+reg.
  def SSrr_Int : SSI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
Chris Lattner's avatar
Chris Lattner committed
                     !strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }
  // Vector intrinsic operation, reg+mem.
  def SSrm_Int : SSI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, ssmem:$src2),
Chris Lattner's avatar
Chris Lattner committed
                     !strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1,
// Arithmetic instructions
defm ADD : scalar_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>;
defm MUL : scalar_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>;
defm SUB : scalar_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>;
defm DIV : scalar_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>;
defm MAX : scalar_sse1_fp_binop_rm<0x5F, "max", X86fmax, int_x86_sse_max_ss>;
defm MIN : scalar_sse1_fp_binop_rm<0x5D, "min", X86fmin, int_x86_sse_min_ss>;

//===----------------------------------------------------------------------===//
// SSE packed FP Instructions

// Move Instructions
def MOVAPSrr : PSI<0x28, MRMSrcReg, (ops VR128:$dst, VR128:$src),
                   "movaps {$src, $dst|$dst, $src}", []>;
def MOVAPSrm : PSI<0x28, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
                   "movaps {$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (loadv4f32 addr:$src))]>;
def MOVAPSmr : PSI<0x29, MRMDestMem, (ops f128mem:$dst, VR128:$src),
                   "movaps {$src, $dst|$dst, $src}",
                   [(store (v4f32 VR128:$src), addr:$dst)]>;
def MOVUPSrr : PSI<0x10, MRMSrcReg, (ops VR128:$dst, VR128:$src),
                   "movups {$src, $dst|$dst, $src}", []>;
def MOVUPSrm : PSI<0x10, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
                   "movups {$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (ops f128mem:$dst, VR128:$src),
                   "movups {$src, $dst|$dst, $src}",
                   [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>;

let isTwoAddress = 1 in {
let AddedComplexity = 20 in {
def MOVLPSrm : PSI<0x12, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f64mem:$src2),
                   "movlps {$src2, $dst|$dst, $src2}",
                   [(set VR128:$dst, 
                     (v4f32 (vector_shuffle VR128:$src1,
                     (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
                             MOVLP_shuffle_mask)))]>;
def MOVHPSrm : PSI<0x16, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f64mem:$src2),
                   "movhps {$src2, $dst|$dst, $src2}",
                   [(set VR128:$dst, 
                     (v4f32 (vector_shuffle VR128:$src1,
                     (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
                             MOVHP_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress

def MOVLPSmr : PSI<0x13, MRMDestMem, (ops f64mem:$dst, VR128:$src),
                   "movlps {$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
                                 (iPTR 0))), addr:$dst)]>;

// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPSmr : PSI<0x17, MRMDestMem, (ops f64mem:$dst, VR128:$src),
                   "movhps {$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract
                                 (v2f64 (vector_shuffle
                                         (bc_v2f64 (v4f32 VR128:$src)), (undef),
                                         UNPCKH_shuffle_mask)), (iPTR 0))),
                     addr:$dst)]>;

let isTwoAddress = 1 in {
let AddedComplexity = 15 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
                    "movlhps {$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                              MOVHP_shuffle_mask)))]>;

def MOVHLPSrr : PSI<0x12, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
                    "movhlps {$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                              MOVHLPS_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress



/// packed_sse1_fp_binop_rm - Packed SSE binops come in three basic forms:
///  1. v4f32    - This comes in SSE1 form for float.
///  2. rr vs rm - They include a reg+reg form and a ref+mem form.
///
let isTwoAddress = 1 in {
multiclass packed_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
                                   SDNode OpNode, bit Commutable = 0> {
  // Packed operation, reg+reg.
  def PSrr : PSI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "ps {$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }

  // Packed operation, reg+mem.
  def PSrm : PSI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                 !strconcat(OpcodeStr, "ps {$src2, $dst|$dst, $src2}"),
                 [(set VR128:$dst, (OpNode VR128:$src1, (loadv4f32 addr:$src2)))]>;
}
}

defm ADD : packed_sse1_fp_binop_rm<0x58, "add", fadd, 1>;
defm MUL : packed_sse1_fp_binop_rm<0x59, "mul", fmul, 1>;
defm DIV : packed_sse1_fp_binop_rm<0x5E, "div", fdiv>;
defm SUB : packed_sse1_fp_binop_rm<0x5C, "sub", fsub>;

// Arithmetic

class PS_Intr<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : PSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
        !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
        [(set VR128:$dst, (IntId VR128:$src))]>;
class PS_Intm<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : PSI<o, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
        !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
        [(set VR128:$dst, (IntId (load addr:$src)))]>;

class PS_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : PSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
        !strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
        [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
class PS_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : PSI<o, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f32mem:$src2),
        !strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
        [(set VR128:$dst, (IntId VR128:$src1, (load addr:$src2)))]>;

def SQRTPSr  : PS_Intr<0x51, "sqrtps", int_x86_sse_sqrt_ps>;
def SQRTPSm  : PS_Intm<0x51, "sqrtps", int_x86_sse_sqrt_ps>;

def RSQRTPSr : PS_Intr<0x52, "rsqrtps", int_x86_sse_rsqrt_ps>;
def RSQRTPSm : PS_Intm<0x52, "rsqrtps", int_x86_sse_rsqrt_ps>;
def RCPPSr   : PS_Intr<0x53, "rcpps", int_x86_sse_rcp_ps>;
def RCPPSm   : PS_Intm<0x53, "rcpps", int_x86_sse_rcp_ps>;

let isTwoAddress = 1 in {
  let isCommutable = 1 in {
    def MAXPSrr  : PS_Intrr<0x5F, "maxps", int_x86_sse_max_ps>;
    def MINPSrr  : PS_Intrr<0x5D, "minps", int_x86_sse_min_ps>;
  }

  def MAXPSrm  : PS_Intrm<0x5F, "maxps", int_x86_sse_max_ps>;
  def MINPSrm  : PS_Intrm<0x5D, "minps", int_x86_sse_min_ps>;
}

// Logical
let isTwoAddress = 1 in {
  let isCommutable = 1 in {
    def ANDPSrr : PSI<0x54, MRMSrcReg,
                      (ops VR128:$dst, VR128:$src1, VR128:$src2),
                      "andps {$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (and VR128:$src1, VR128:$src2)))]>;
    def ORPSrr  : PSI<0x56, MRMSrcReg,
                      (ops VR128:$dst, VR128:$src1, VR128:$src2),
                      "orps {$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (or VR128:$src1, VR128:$src2)))]>;
    def XORPSrr : PSI<0x57, MRMSrcReg,
                      (ops VR128:$dst, VR128:$src1, VR128:$src2),
                      "xorps {$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (xor VR128:$src1, VR128:$src2)))]>;
  }

  def ANDPSrm : PSI<0x54, MRMSrcMem,
                    (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                    "andps {$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (and VR128:$src1,
                                       (bc_v2i64 (loadv4f32 addr:$src2))))]>;
  def ORPSrm  : PSI<0x56, MRMSrcMem,
                    (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                    "orps {$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (or VR128:$src1,
                                       (bc_v2i64 (loadv4f32 addr:$src2))))]>;
  def XORPSrm : PSI<0x57, MRMSrcMem,
                    (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                    "xorps {$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (xor VR128:$src1,
                                       (bc_v2i64 (loadv4f32 addr:$src2))))]>;
  def ANDNPSrr : PSI<0x55, MRMSrcReg,
                     (ops VR128:$dst, VR128:$src1, VR128:$src2),
                     "andnps {$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (v2i64 (and (xor VR128:$src1,
                                    (bc_v2i64 (v4i32 immAllOnesV))),
                               VR128:$src2)))]>;
  def ANDNPSrm : PSI<0x55, MRMSrcMem,
                     (ops VR128:$dst, VR128:$src1,f128mem:$src2),
                     "andnps {$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (v2i64 (and (xor VR128:$src1,
                                    (bc_v2i64 (v4i32 immAllOnesV))),
                               (bc_v2i64 (loadv4f32 addr:$src2)))))]>;
}

let isTwoAddress = 1 in {
  def CMPPSrri : PSIi8<0xC2, MRMSrcReg, 
                      (ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
                      "cmp${cc}ps {$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
                                         VR128:$src, imm:$cc))]>;
  def CMPPSrmi : PSIi8<0xC2, MRMSrcMem, 
                      (ops VR128:$dst, VR128:$src1, f128mem:$src, SSECC:$cc),
                      "cmp${cc}ps {$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
                                         (load addr:$src), imm:$cc))]>;
}

// Shuffle and unpack instructions
let isTwoAddress = 1 in {
  let isConvertibleToThreeAddress = 1 in // Convert to pshufd
    def SHUFPSrri : PSIi8<0xC6, MRMSrcReg, 
                          (ops VR128:$dst, VR128:$src1,
                           VR128:$src2, i32i8imm:$src3),
                          "shufps {$src3, $src2, $dst|$dst, $src2, $src3}",
                          [(set VR128:$dst,
                            (v4f32 (vector_shuffle
                                    VR128:$src1, VR128:$src2,
                                    SHUFP_shuffle_mask:$src3)))]>;
  def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem, 
                        (ops VR128:$dst, VR128:$src1,
                         f128mem:$src2, i32i8imm:$src3),
                        "shufps {$src3, $src2, $dst|$dst, $src2, $src3}",
                        [(set VR128:$dst,
                          (v4f32 (vector_shuffle
                                  VR128:$src1, (load addr:$src2),
                                  SHUFP_shuffle_mask:$src3)))]>;

  let AddedComplexity = 10 in {
    def UNPCKHPSrr : PSI<0x15, MRMSrcReg, 
                         (ops VR128:$dst, VR128:$src1, VR128:$src2),
                         "unpckhps {$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKH_shuffle_mask)))]>;
    def UNPCKHPSrm : PSI<0x15, MRMSrcMem, 
                         (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                         "unpckhps {$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, (load addr:$src2),
                                   UNPCKH_shuffle_mask)))]>;

    def UNPCKLPSrr : PSI<0x14, MRMSrcReg, 
                         (ops VR128:$dst, VR128:$src1, VR128:$src2),
                         "unpcklps {$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKL_shuffle_mask)))]>;
    def UNPCKLPSrm : PSI<0x14, MRMSrcMem, 
                         (ops VR128:$dst, VR128:$src1, f128mem:$src2),
                         "unpcklps {$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, (load addr:$src2),
                                   UNPCKL_shuffle_mask)))]>;
  } // AddedComplexity
} // isTwoAddress

// Mask creation
def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                     "movmskps {$src, $dst|$dst, $src}",
                     [(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>;
def MOVMSKPDrr : PSI<0x50, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                     "movmskpd {$src, $dst|$dst, $src}",
                     [(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>;

// Prefetching loads.
// TODO: no intrinsics for these?
def PREFETCHT0   : PSI<0x18, MRM1m, (ops i8mem:$src), "prefetcht0 $src", []>;
def PREFETCHT1   : PSI<0x18, MRM2m, (ops i8mem:$src), "prefetcht1 $src", []>;
def PREFETCHT2   : PSI<0x18, MRM3m, (ops i8mem:$src), "prefetcht2 $src", []>;
def PREFETCHNTA  : PSI<0x18, MRM0m, (ops i8mem:$src), "prefetchnta $src", []>;

// Non-temporal stores
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (ops i128mem:$dst, VR128:$src),
                    "movntps {$src, $dst|$dst, $src}",
                    [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>;

// Load, store, and memory fence
def SFENCE : PSI<0xAE, MRM7m, (ops), "sfence", [(int_x86_sse_sfence)]>;

// MXCSR register
def LDMXCSR : PSI<0xAE, MRM2m, (ops i32mem:$src),
                  "ldmxcsr $src", [(int_x86_sse_ldmxcsr addr:$src)]>;
def STMXCSR : PSI<0xAE, MRM3m, (ops i32mem:$dst),
                  "stmxcsr $dst", [(int_x86_sse_stmxcsr addr:$dst)]>;

// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def V_SET0 : PSI<0x57, MRMInitReg, (ops VR128:$dst),
                 "xorps $dst, $dst",
                 [(set VR128:$dst, (v4f32 immAllZerosV))]>;

// FR32 to 128-bit vector conversion.
def MOVSS2PSrr : SSI<0x10, MRMSrcReg, (ops VR128:$dst, FR32:$src),
                      "movss {$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v4f32 (scalar_to_vector FR32:$src)))]>;
def MOVSS2PSrm : SSI<0x10, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
                     "movss {$src, $dst|$dst, $src}",
                     [(set VR128:$dst,
                       (v4f32 (scalar_to_vector (loadf32 addr:$src))))]>;

// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
//           (f32 FR32:$src)>;
def MOVPS2SSrr : SSI<0x10, MRMSrcReg, (ops FR32:$dst, VR128:$src),
                     "movss {$src, $dst|$dst, $src}",
                     [(set FR32:$dst, (vector_extract (v4f32 VR128:$src),
                                       (iPTR 0)))]>;
def MOVPS2SSmr : SSI<0x11, MRMDestMem, (ops f32mem:$dst, VR128:$src),
                     "movss {$src, $dst|$dst, $src}",
                     [(store (f32 (vector_extract (v4f32 VR128:$src),
                                   (iPTR 0))), addr:$dst)]>;


// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let isTwoAddress = 1 in {
  def MOVLSS2PSrr : SSI<0x10, MRMSrcReg,
                        (ops VR128:$dst, VR128:$src1, FR32:$src2),
                        "movss {$src2, $dst|$dst, $src2}", []>;

  let AddedComplexity = 15 in
    def MOVLPSrr : SSI<0x10, MRMSrcReg,
                       (ops VR128:$dst, VR128:$src1, VR128:$src2),
                       "movss {$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst,
                         (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                                 MOVL_shuffle_mask)))]>;
}

// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
                      "movss {$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle immAllZerosV,
                                 (v4f32 (scalar_to_vector (loadf32 addr:$src))),
                                                MOVL_shuffle_mask)))]>;


//===----------------------------------------------------------------------===//
// SSE2 Instructions
//===----------------------------------------------------------------------===//

// SSE2 Instruction Templates:
// 
//   SDI   - SSE2 instructions with XD prefix.
//   PDI   - SSE2 instructions with TB and OpSize prefixes.
//   PDIi8 - SSE2 instructions with ImmT == Imm8 and TB and OpSize prefixes.

class SDI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : I<o, F, ops, asm, pattern>, XD, Requires<[HasSSE2]>;
class PDI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : I<o, F, ops, asm, pattern>, TB, OpSize, Requires<[HasSSE2]>;
class PDIi8<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
      : Ii8<o, F, ops, asm, pattern>, TB, OpSize, Requires<[HasSSE2]>;

// Helpers for defining instructions that directly correspond to intrinsics.
multiclass SD_IntUnary<bits<8> o, string OpcodeStr, Intrinsic IntId> {
  def r : SDI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
              !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v2f64 (IntId VR128:$src)))]>;
  def m : SDI<o, MRMSrcMem, (ops VR128:$dst, sdmem:$src),
              !strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v2f64 (IntId sse_load_f64:$src)))]>;
}

// Move Instructions
def MOVSDrr : SDI<0x10, MRMSrcReg, (ops FR64:$dst, FR64:$src),
                  "movsd {$src, $dst|$dst, $src}", []>;
def MOVSDrm : SDI<0x10, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
                  "movsd {$src, $dst|$dst, $src}",
                  [(set FR64:$dst, (loadf64 addr:$src))]>;
def MOVSDmr : SDI<0x11, MRMDestMem, (ops f64mem:$dst, FR64:$src),
                  "movsd {$src, $dst|$dst, $src}",
                  [(store FR64:$src, addr:$dst)]>;
def SQRTSDr : SDI<0x51, MRMSrcReg, (ops FR64:$dst, FR64:$src),
                  "sqrtsd {$src, $dst|$dst, $src}",
                  [(set FR64:$dst, (fsqrt FR64:$src))]>;
def SQRTSDm : SDI<0x51, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
                  "sqrtsd {$src, $dst|$dst, $src}",
                  [(set FR64:$dst, (fsqrt (loadf64 addr:$src)))]>;
// Aliases to match intrinsics which expect XMM operand(s).
defm SQRTSD_Int : SD_IntUnary<0x51, "sqrtsd" , int_x86_sse2_sqrt_sd>;
def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (ops GR32:$dst, FR64:$src),
                      "cvttsd2si {$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (ops GR32:$dst, f64mem:$src),
                      "cvttsd2si {$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def CVTSD2SSrr  : SDI<0x5A, MRMSrcReg, (ops FR32:$dst, FR64:$src),
                      "cvtsd2ss {$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (fround FR64:$src))]>;
def CVTSD2SSrm  : SDI<0x5A, MRMSrcMem, (ops FR32:$dst, f64mem:$src), 
                      "cvtsd2ss {$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (fround (loadf64 addr:$src)))]>;
def CVTSI2SDrr  : SDI<0x2A, MRMSrcReg, (ops FR64:$dst, GR32:$src),
                      "cvtsi2sd {$src, $dst|$dst, $src}",
                      [(set FR64:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SDrm  : SDI<0x2A, MRMSrcMem, (ops FR64:$dst, i32mem:$src),
                      "cvtsi2sd {$src, $dst|$dst, $src}",
                      [(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (ops FR64:$dst, FR32:$src),
                   "cvtss2sd {$src, $dst|$dst, $src}",
                   [(set FR64:$dst, (fextend FR32:$src))]>, XS,
                 Requires<[HasSSE2]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (ops FR64:$dst, f32mem:$src),
                   "cvtss2sd {$src, $dst|$dst, $src}",
                   [(set FR64:$dst, (extloadf32 addr:$src))]>, XS,
                 Requires<[HasSSE2]>;
// Match intrinsics which expect XMM operand(s).
def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                         "cvtsd2si {$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>;
def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (ops GR32:$dst, f128mem:$src),
                         "cvtsd2si {$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse2_cvtsd2si
                                           (load addr:$src)))]>;

// Aliases for intrinsics
def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (ops GR32:$dst, VR128:$src),
                          "cvttsd2si {$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse2_cvttsd2si VR128:$src))]>;
def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (ops GR32:$dst, f128mem:$src),
                          "cvttsd2si {$src, $dst|$dst, $src}",
                          [(set GR32:$dst, (int_x86_sse2_cvttsd2si
                                            (load addr:$src)))]>;
// Comparison instructions
let isTwoAddress = 1 in {
  def CMPSDrr : SDI<0xC2, MRMSrcReg, 
                    (ops FR64:$dst, FR64:$src1, FR64:$src, SSECC:$cc),
                    "cmp${cc}sd {$src, $dst|$dst, $src}", []>;
  def CMPSDrm : SDI<0xC2, MRMSrcMem, 
                    (ops FR64:$dst, FR64:$src1, f64mem:$src, SSECC:$cc),
                    "cmp${cc}sd {$src, $dst|$dst, $src}", []>;
def UCOMISDrr: PDI<0x2E, MRMSrcReg, (ops FR64:$src1, FR64:$src2),
                   "ucomisd {$src2, $src1|$src1, $src2}",
                   [(X86cmp FR64:$src1, FR64:$src2)]>;
def UCOMISDrm: PDI<0x2E, MRMSrcMem, (ops FR64:$src1, f64mem:$src2),
                   "ucomisd {$src2, $src1|$src1, $src2}",
                   [(X86cmp FR64:$src1, (loadf64 addr:$src2))]>;
// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
  def Int_CMPSDrr : SDI<0xC2, MRMSrcReg, 
                        (ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
                        "cmp${cc}sd {$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
                                           VR128:$src, imm:$cc))]>;
  def Int_CMPSDrm : SDI<0xC2, MRMSrcMem, 
                        (ops VR128:$dst, VR128:$src1, f64mem:$src, SSECC:$cc),
                        "cmp${cc}sd {$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
                                           (load addr:$src), imm:$cc))]>;
def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
                       "ucomisd {$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v2f64 VR128:$src1), (v2f64 VR128:$src2))]>;
def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
                       "ucomisd {$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v2f64 VR128:$src1), (load addr:$src2))]>;

def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
                      "comisd {$src2, $src1|$src1, $src2}",
                      [(X86comi (v2f64 VR128:$src1), (v2f64 VR128:$src2))]>;
def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
                      "comisd {$src2, $src1|$src1, $src2}",
                      [(X86comi (v2f64 VR128:$src1), (load addr:$src2))]>;
// Aliases of packed instructions for scalar use. These all have names that
// start with 'Fs'.

// Alias instructions that map fld0 to pxor for sse.
def FsFLD0SD : I<0xEF, MRMInitReg, (ops FR64:$dst),
                 "pxor $dst, $dst", [(set FR64:$dst, fp64imm0)]>,
               Requires<[HasSSE2]>, TB, OpSize;

// Alias instructions to do FR64 reg-to-reg copy using movapd. Upper bits are
// disregarded.
def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (ops FR64:$dst, FR64:$src),
                   "movapd {$src, $dst|$dst, $src}", []>;
// Alias instructions to load FR64 from f128mem using movapd. Upper bits are
// disregarded.
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (ops FR64:$dst, f128mem:$src),
                  "movapd {$src, $dst|$dst, $src}",
                  [(set FR64:$dst, (X86loadpf64 addr:$src))]>;
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {
let isCommutable = 1 in {
  def FsANDPDrr : PDI<0x54, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
                      "andpd {$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>;
  def FsORPDrr  : PDI<0x56, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
                      "orpd {$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>;
  def FsXORPDrr : PDI<0x57, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
                      "xorpd {$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>;
}

def FsANDPDrm : PDI<0x54, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
                    "andpd {$src2, $dst|$dst, $src2}",
                    [(set FR64:$dst, (X86fand FR64:$src1,
                                      (X86loadpf64 addr:$src2)))]>;
def FsORPDrm  : PDI<0x56, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
                    "orpd {$src2, $dst|$dst, $src2}",
                    [(set FR64:$dst, (X86for FR64:$src1,
                                      (X86loadpf64 addr:$src2)))]>;
def FsXORPDrm : PDI<0x57, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
                    "xorpd {$src2, $dst|$dst, $src2}",