Skip to content
X86ISelLowering.cpp 197 KiB
Newer Older
      } else if (!X86ScalarSSE) {
        // FP return with fp-stack value.
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::ST0);

        SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
        SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
        // FP return with ScalarSSE (return on fp-stack).
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::ST0);

        SDOperand MemLoc;
        SDOperand Chain = Op.getOperand(0);
        if (ISD::isNON_EXTLoad(Value.Val) &&
            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
          Chain  = Value.getOperand(0);
          MemLoc = Value.getOperand(1);
        } else {
          // Spill the value to memory and reload it into top of stack.
          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
          MachineFunction &MF = DAG.getMachineFunction();
          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
          Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
        SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
        SDOperand Ops[] = { Chain, MemLoc, DAG.getValueType(ArgVT) };
        Copy = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
        
        Tys = DAG.getVTList(MVT::Other, MVT::Flag);
        Ops[0] = Copy.getValue(1);
        Ops[1] = Copy;
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
Evan Cheng's avatar
Evan Cheng committed
    case 5: {
      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
      if (DAG.getMachineFunction().liveout_empty()) {
Evan Cheng's avatar
Evan Cheng committed
        DAG.getMachineFunction().addLiveOut(Reg1);
        DAG.getMachineFunction().addLiveOut(Reg2);
      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
Evan Cheng's avatar
Evan Cheng committed
      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
  }
  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
Evan Cheng's avatar
Evan Cheng committed
                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
SDOperand
X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  const Function* Fn = MF.getFunction();
  if (Fn->hasExternalLinkage() &&
Anton Korobeynikov's avatar
Anton Korobeynikov committed
      Subtarget->isTargetCygMing() &&
      Fn->getName() == "main")
    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);

  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
Evan Cheng's avatar
Evan Cheng committed
  if (Subtarget->is64Bit())
    return LowerX86_64CCCArguments(Op, DAG);
    default:
      assert(0 && "Unsupported calling convention");
    case CallingConv::Fast:
      if (EnableFastCC) {
        return LowerFastCCArguments(Op, DAG);
      }
      // Falls through
    case CallingConv::C:
      return LowerCCCArguments(Op, DAG);
    case CallingConv::X86_StdCall:
      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
      return LowerCCCArguments(Op, DAG, true);
    case CallingConv::X86_FastCall:
      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
      return LowerFastCCArguments(Op, DAG, true);
SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
  SDOperand InFlag(0, 0);
  SDOperand Chain = Op.getOperand(0);
  unsigned Align =
    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
  if (Align == 0) Align = 1;

  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
  // If not DWORD aligned, call memset if size is less than the threshold.
  // It knows how to align to the right boundary first.
  if ((Align & 3) != 0 ||
      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
    MVT::ValueType IntPtr = getPointerTy();
    const Type *IntPtrTy = getTargetData()->getIntPtrType();
Reid Spencer's avatar
Reid Spencer committed
    TargetLowering::ArgListTy Args; 
    TargetLowering::ArgListEntry Entry;
    Entry.Node = Op.getOperand(1);
    Entry.Ty = IntPtrTy;
    Entry.isSigned = false;
    Entry.isInReg = false;
    Entry.isSRet = false;
Reid Spencer's avatar
Reid Spencer committed
    Args.push_back(Entry);
    // Extend the unsigned i8 argument to be an int value for the call.
Reid Spencer's avatar
Reid Spencer committed
    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
    Entry.Ty = IntPtrTy;
    Entry.isSigned = false;
    Entry.isInReg = false;
    Entry.isSRet = false;
Reid Spencer's avatar
Reid Spencer committed
    Args.push_back(Entry);
    Entry.Node = Op.getOperand(3);
    Args.push_back(Entry);
    std::pair<SDOperand,SDOperand> CallResult =
Reid Spencer's avatar
Reid Spencer committed
      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
    return CallResult.second;
  }

  MVT::ValueType AVT;
  SDOperand Count;
  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
  unsigned BytesLeft = 0;
  bool TwoRepStos = false;
  if (ValC) {
    unsigned ValReg;
Evan Cheng's avatar
Evan Cheng committed
    uint64_t Val = ValC->getValue() & 255;

    // If the value is a constant, then we can potentially use larger sets.
    switch (Align & 3) {
      case 2:   // WORD aligned
        AVT = MVT::i16;
        ValReg = X86::AX;
Evan Cheng's avatar
Evan Cheng committed
        Val = (Val << 8) | Val;
Evan Cheng's avatar
Evan Cheng committed
      case 0:  // DWORD aligned
Evan Cheng's avatar
Evan Cheng committed
        ValReg = X86::EAX;
        Val = (Val << 8)  | Val;
        Val = (Val << 16) | Val;
Evan Cheng's avatar
Evan Cheng committed
        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
          AVT = MVT::i64;
          ValReg = X86::RAX;
          Val = (Val << 32) | Val;
        }
        break;
      default:  // Byte aligned
        AVT = MVT::i8;
        ValReg = X86::AL;
Evan Cheng's avatar
Evan Cheng committed
        Count = Op.getOperand(3);
Evan Cheng's avatar
Evan Cheng committed
    if (AVT > MVT::i8) {
      if (I) {
        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
        BytesLeft = I->getValue() % UBytes;
      } else {
        assert(AVT >= MVT::i32 &&
               "Do not use rep;stos if not at least DWORD aligned");
        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
        TwoRepStos = true;
      }
    }

    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
                              InFlag);
    InFlag = Chain.getValue(1);
  } else {
    AVT = MVT::i8;
    Count  = Op.getOperand(3);
    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
    InFlag = Chain.getValue(1);
Evan Cheng's avatar
Evan Cheng committed
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
                            Count, InFlag);
Evan Cheng's avatar
Evan Cheng committed
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
                            Op.getOperand(1), InFlag);
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
  if (TwoRepStos) {
    InFlag = Chain.getValue(1);
    Count = Op.getOperand(3);
    MVT::ValueType CVT = Count.getValueType();
    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
Evan Cheng's avatar
Evan Cheng committed
                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
                              Left, InFlag);
    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
    Ops.clear();
    Ops.push_back(Chain);
    Ops.push_back(DAG.getValueType(MVT::i8));
    Ops.push_back(InFlag);
    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
Evan Cheng's avatar
Evan Cheng committed
    // Issue stores for the last 1 - 7 bytes.
    SDOperand Value;
    unsigned Val = ValC->getValue() & 255;
    unsigned Offset = I->getValue() - BytesLeft;
    SDOperand DstAddr = Op.getOperand(1);
    MVT::ValueType AddrVT = DstAddr.getValueType();
Evan Cheng's avatar
Evan Cheng committed
    if (BytesLeft >= 4) {
      Val = (Val << 8)  | Val;
      Val = (Val << 16) | Val;
      Value = DAG.getConstant(Val, MVT::i32);
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
                                       DAG.getConstant(Offset, AddrVT)),
Evan Cheng's avatar
Evan Cheng committed
      BytesLeft -= 4;
      Offset += 4;
    }
    if (BytesLeft >= 2) {
      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
                                       DAG.getConstant(Offset, AddrVT)),
      BytesLeft -= 2;
      Offset += 2;
    }
    if (BytesLeft == 1) {
      Value = DAG.getConstant(Val, MVT::i8);
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
                                       DAG.getConstant(Offset, AddrVT)),
SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
  SDOperand Chain = Op.getOperand(0);
  unsigned Align =
    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
  if (Align == 0) Align = 1;

  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
  // If not DWORD aligned, call memcpy if size is less than the threshold.
  // It knows how to align to the right boundary first.
  if ((Align & 3) != 0 ||
      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
    MVT::ValueType IntPtr = getPointerTy();
Reid Spencer's avatar
Reid Spencer committed
    TargetLowering::ArgListTy Args;
    TargetLowering::ArgListEntry Entry;
    Entry.Ty = getTargetData()->getIntPtrType();
    Entry.isSigned = false;
    Entry.isInReg = false;
    Entry.isSRet = false;
Reid Spencer's avatar
Reid Spencer committed
    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
    std::pair<SDOperand,SDOperand> CallResult =
Reid Spencer's avatar
Reid Spencer committed
      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
    return CallResult.second;
  }

  MVT::ValueType AVT;
  SDOperand Count;
  unsigned BytesLeft = 0;
  bool TwoRepMovs = false;
  switch (Align & 3) {
    case 2:   // WORD aligned
      AVT = MVT::i16;
      break;
Evan Cheng's avatar
Evan Cheng committed
    case 0:  // DWORD aligned
Evan Cheng's avatar
Evan Cheng committed
      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
        AVT = MVT::i64;
      break;
    default:  // Byte aligned
      AVT = MVT::i8;
      Count = Op.getOperand(3);
      break;
  }
Evan Cheng's avatar
Evan Cheng committed
  if (AVT > MVT::i8) {
    if (I) {
      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
      BytesLeft = I->getValue() % UBytes;
    } else {
      assert(AVT >= MVT::i32 &&
             "Do not use rep;movs if not at least DWORD aligned");
      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
      TwoRepMovs = true;
    }
  }

Evan Cheng's avatar
Evan Cheng committed
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
                            Count, InFlag);
Evan Cheng's avatar
Evan Cheng committed
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
                            Op.getOperand(1), InFlag);
Evan Cheng's avatar
Evan Cheng committed
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
                            Op.getOperand(2), InFlag);
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
  if (TwoRepMovs) {
    InFlag = Chain.getValue(1);
    Count = Op.getOperand(3);
    MVT::ValueType CVT = Count.getValueType();
    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
Evan Cheng's avatar
Evan Cheng committed
                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
                              Left, InFlag);
    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
    Ops.clear();
    Ops.push_back(Chain);
    Ops.push_back(DAG.getValueType(MVT::i8));
    Ops.push_back(InFlag);
    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
Evan Cheng's avatar
Evan Cheng committed
    // Issue loads and stores for the last 1 - 7 bytes.
    unsigned Offset = I->getValue() - BytesLeft;
    SDOperand DstAddr = Op.getOperand(1);
    MVT::ValueType DstVT = DstAddr.getValueType();
    SDOperand SrcAddr = Op.getOperand(2);
    MVT::ValueType SrcVT = SrcAddr.getValueType();
    SDOperand Value;
Evan Cheng's avatar
Evan Cheng committed
    if (BytesLeft >= 4) {
      Value = DAG.getLoad(MVT::i32, Chain,
                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
                                      DAG.getConstant(Offset, SrcVT)),
Evan Cheng's avatar
Evan Cheng committed
      Chain = Value.getValue(1);
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
                                       DAG.getConstant(Offset, DstVT)),
Evan Cheng's avatar
Evan Cheng committed
      BytesLeft -= 4;
      Offset += 4;
    }
    if (BytesLeft >= 2) {
      Value = DAG.getLoad(MVT::i16, Chain,
                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
                                      DAG.getConstant(Offset, SrcVT)),
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
                                       DAG.getConstant(Offset, DstVT)),
      BytesLeft -= 2;
      Offset += 2;
    }

    if (BytesLeft == 1) {
      Value = DAG.getLoad(MVT::i8, Chain,
                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
                                      DAG.getConstant(Offset, SrcVT)),
Evan Cheng's avatar
Evan Cheng committed
      Chain = DAG.getStore(Chain, Value,
                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
                                       DAG.getConstant(Offset, DstVT)),
SDOperand
X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Op.getOperand(0));
  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
  if (Subtarget->is64Bit()) {
    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
                                         MVT::i64, Copy1.getValue(2));
    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
                                DAG.getConstant(32, MVT::i8));
    Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp));
    Ops.push_back(Copy2.getValue(1));
    
    Tys = DAG.getVTList(MVT::i64, MVT::Other);
  } else {
    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
                                         MVT::i32, Copy1.getValue(2));
    Ops.push_back(Copy1);
    Ops.push_back(Copy2);
    Ops.push_back(Copy2.getValue(1));
    Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
}

SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));

Evan Cheng's avatar
Evan Cheng committed
  if (!Subtarget->is64Bit()) {
    // vastart just stores the address of the VarArgsFrameIndex slot into the
    // memory location argument.
    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
                        SV->getOffset());
Evan Cheng's avatar
Evan Cheng committed
  }

  // __va_list_tag:
  //   gp_offset         (0 - 6 * 8)
  //   fp_offset         (48 - 48 + 8 * 16)
  //   overflow_arg_area (point to parameters coming in memory).
  //   reg_save_area
  std::vector<SDOperand> MemOps;
  SDOperand FIN = Op.getOperand(1);
  // Store gp_offset
Evan Cheng's avatar
Evan Cheng committed
  SDOperand Store = DAG.getStore(Op.getOperand(0),
                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
                                 FIN, SV->getValue(), SV->getOffset());
Evan Cheng's avatar
Evan Cheng committed
  MemOps.push_back(Store);

  // Store fp_offset
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
                    DAG.getConstant(4, getPointerTy()));
Evan Cheng's avatar
Evan Cheng committed
  Store = DAG.getStore(Op.getOperand(0),
                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
                       FIN, SV->getValue(), SV->getOffset());
Evan Cheng's avatar
Evan Cheng committed
  MemOps.push_back(Store);

  // Store ptr to overflow_arg_area
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
                    DAG.getConstant(4, getPointerTy()));
  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
                       SV->getOffset());
Evan Cheng's avatar
Evan Cheng committed
  MemOps.push_back(Store);

  // Store ptr to reg_save_area.
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
                    DAG.getConstant(8, getPointerTy()));
  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
                       SV->getOffset());
Evan Cheng's avatar
Evan Cheng committed
  MemOps.push_back(Store);
  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
}

SDOperand
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
  switch (IntNo) {
  default: return SDOperand();    // Don't custom lower most intrinsics.
    // Comparison intrinsics.
  case Intrinsic::x86_sse_comieq_ss:
  case Intrinsic::x86_sse_comilt_ss:
  case Intrinsic::x86_sse_comile_ss:
  case Intrinsic::x86_sse_comigt_ss:
  case Intrinsic::x86_sse_comige_ss:
  case Intrinsic::x86_sse_comineq_ss:
  case Intrinsic::x86_sse_ucomieq_ss:
  case Intrinsic::x86_sse_ucomilt_ss:
  case Intrinsic::x86_sse_ucomile_ss:
  case Intrinsic::x86_sse_ucomigt_ss:
  case Intrinsic::x86_sse_ucomige_ss:
  case Intrinsic::x86_sse_ucomineq_ss:
  case Intrinsic::x86_sse2_comieq_sd:
  case Intrinsic::x86_sse2_comilt_sd:
  case Intrinsic::x86_sse2_comile_sd:
  case Intrinsic::x86_sse2_comigt_sd:
  case Intrinsic::x86_sse2_comige_sd:
  case Intrinsic::x86_sse2_comineq_sd:
  case Intrinsic::x86_sse2_ucomieq_sd:
  case Intrinsic::x86_sse2_ucomilt_sd:
  case Intrinsic::x86_sse2_ucomile_sd:
  case Intrinsic::x86_sse2_ucomigt_sd:
  case Intrinsic::x86_sse2_ucomige_sd:
  case Intrinsic::x86_sse2_ucomineq_sd: {
    unsigned Opc = 0;
    ISD::CondCode CC = ISD::SETCC_INVALID;
    switch (IntNo) {
    default: break;
    case Intrinsic::x86_sse_comieq_ss:
    case Intrinsic::x86_sse2_comieq_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_comilt_ss:
    case Intrinsic::x86_sse2_comilt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_comile_ss:
    case Intrinsic::x86_sse2_comile_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_comigt_ss:
    case Intrinsic::x86_sse2_comigt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_comige_ss:
    case Intrinsic::x86_sse2_comige_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_comineq_ss:
    case Intrinsic::x86_sse2_comineq_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETNE;
      break;
    case Intrinsic::x86_sse_ucomieq_ss:
    case Intrinsic::x86_sse2_ucomieq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_ucomilt_ss:
    case Intrinsic::x86_sse2_ucomilt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_ucomile_ss:
    case Intrinsic::x86_sse2_ucomile_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_ucomigt_ss:
    case Intrinsic::x86_sse2_ucomigt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_ucomige_ss:
    case Intrinsic::x86_sse2_ucomige_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_ucomineq_ss:
    case Intrinsic::x86_sse2_ucomineq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETNE;
      break;
    SDOperand LHS = Op.getOperand(1);
    SDOperand RHS = Op.getOperand(2);
    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);

    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
  }
SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
  // Depths > 0 not supported yet!
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
    return SDOperand();
  
  // Just load the return address
  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
}

SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
  // Depths > 0 not supported yet!
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
    return SDOperand();
    
  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 
                     DAG.getConstant(4, getPointerTy()));
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Should not custom lower this!");
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
  case ISD::SHL_PARTS:
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
  case ISD::FABS:               return LowerFABS(Op, DAG);
  case ISD::FNEG:               return LowerFNEG(Op, DAG);
  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
  case ISD::SELECT:             return LowerSELECT(Op, DAG);
  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
  case ISD::CALL:               return LowerCALL(Op, DAG);
  case ISD::RET:                return LowerRET(Op, DAG);
  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);

const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  default: return NULL;
  case X86ISD::SHLD:               return "X86ISD::SHLD";
  case X86ISD::SHRD:               return "X86ISD::SHRD";
  case X86ISD::FAND:               return "X86ISD::FAND";
  case X86ISD::FOR:                return "X86ISD::FOR";
  case X86ISD::FXOR:               return "X86ISD::FXOR";
  case X86ISD::FSRL:               return "X86ISD::FSRL";
  case X86ISD::FILD:               return "X86ISD::FILD";
  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
  case X86ISD::FLD:                return "X86ISD::FLD";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::FST:                return "X86ISD::FST";
  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
  case X86ISD::CALL:               return "X86ISD::CALL";
  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
  case X86ISD::CMP:                return "X86ISD::CMP";
  case X86ISD::COMI:               return "X86ISD::COMI";
  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
  case X86ISD::SETCC:              return "X86ISD::SETCC";
  case X86ISD::CMOV:               return "X86ISD::CMOV";
  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
  case X86ISD::FMAX:               return "X86ISD::FMAX";
  case X86ISD::FMIN:               return "X86ISD::FMIN";
/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
  // X86 allows a sign-extended 32-bit immediate field.
  return (V > -(1LL << 32) && V < (1LL << 32)-1);
}

bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement 
  // field unless we are in small code model.
  if (Subtarget->is64Bit() &&
      getTargetMachine().getCodeModel() != CodeModel::Small)
    return false;
  
  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
}

/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
  // Only do shuffles on 128-bit vector types for now.
  if (MVT::getSizeInBits(VT) == 64) return false;
  return (Mask.Val->getNumOperands() <= 4 ||
          isSplatMask(Mask.Val)  ||
          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
          X86::isUNPCKLMask(Mask.Val) ||
          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
          X86::isUNPCKHMask(Mask.Val));
}

bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
                                               MVT::ValueType EVT,
                                               SelectionDAG &DAG) const {
  unsigned NumElts = BVOps.size();
  // Only do shuffles on 128-bit vector types for now.
  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
  if (NumElts == 2) return true;
  if (NumElts == 4) {
    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
  }
  return false;
}

//===----------------------------------------------------------------------===//
//                           X86 Scheduler Hooks
//===----------------------------------------------------------------------===//

MachineBasicBlock *
X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                           MachineBasicBlock *BB) {
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  switch (MI->getOpcode()) {
  default: assert(false && "Unexpected instr type to insert");
  case X86::CMOV_FR32:
  case X86::CMOV_FR64:
  case X86::CMOV_V4F32:
  case X86::CMOV_V2F64:
  case X86::CMOV_V2I64: {
    // To "insert" a SELECT_CC instruction, we actually have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // destination vreg to set, the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    ilist<MachineBasicBlock>::iterator It = BB;
    ++It;
    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   cmpTY ccX, r1, r2
    //   bCC copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB = BB;
    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
    MachineFunction *F = BB->getParent();
    F->getBasicBlockList().insert(It, copy0MBB);
    F->getBasicBlockList().insert(It, sinkMBB);
    // Update machine-CFG edges by first adding all successors of the current
    // block to the new block which will contain the Phi node for the select.
    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
        e = BB->succ_end(); i != e; ++i)
      sinkMBB->addSuccessor(*i);
    // Next, remove all successors of the current block, and add the true
    // and fallthrough blocks as its successors.
    while(!BB->succ_empty())
      BB->removeSuccessor(BB->succ_begin());
    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);
    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;
    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);
    //  sinkMBB:
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);

    delete MI;   // The pseudo instruction is gone now.
    return BB;
  }

  case X86::FP_TO_INT16_IN_MEM:
  case X86::FP_TO_INT32_IN_MEM:
  case X86::FP_TO_INT64_IN_MEM: {
    // Change the floating point control register to use "round towards zero"
    // mode when truncating to an integer value.
    MachineFunction *F = BB->getParent();
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);

    // Load the old value of the high byte of the control word...
    unsigned OldCW =
      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);

    // Set the high part to be round to zero...
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
      .addImm(0xC7F);

    // Reload the modified control word now...
    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);

    // Restore the memory image of control word to original value
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
      .addReg(OldCW);

    // Get the X86 opcode to use.
    unsigned Opc;
    switch (MI->getOpcode()) {
    default: assert(0 && "illegal opcode!");
    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
    }

    X86AddressMode AM;
    MachineOperand &Op = MI->getOperand(0);
    if (Op.isRegister()) {
      AM.BaseType = X86AddressMode::RegBase;
      AM.Base.Reg = Op.getReg();
    } else {
      AM.BaseType = X86AddressMode::FrameIndexBase;
      AM.Base.FrameIndex = Op.getFrameIndex();
    }
    Op = MI->getOperand(1);
    if (Op.isImmediate())
    Op = MI->getOperand(2);
    if (Op.isImmediate())
    Op = MI->getOperand(3);
    if (Op.isGlobalAddress()) {
      AM.GV = Op.getGlobal();
    } else {
    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
                      .addReg(MI->getOperand(4).getReg());

    // Reload the original control word now.
    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);

    delete MI;   // The pseudo instruction is gone now.
    return BB;
  }
  }
}

//===----------------------------------------------------------------------===//
//                           X86 Optimization Hooks
//===----------------------------------------------------------------------===//

void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
                                                       uint64_t Mask,
                                                       uint64_t &KnownOne,
                                                       unsigned Depth) const {
  unsigned Opc = Op.getOpcode();
Evan Cheng's avatar
Evan Cheng committed
  assert((Opc >= ISD::BUILTIN_OP_END ||
          Opc == ISD::INTRINSIC_WO_CHAIN ||
          Opc == ISD::INTRINSIC_W_CHAIN ||
          Opc == ISD::INTRINSIC_VOID) &&
         "Should use MaskedValueIsZero if you don't know whether Op"
         " is a target node!");
Evan Cheng's avatar
Evan Cheng committed
  KnownZero = KnownOne = 0;   // Don't know anything.
  switch (Opc) {
Evan Cheng's avatar
Evan Cheng committed
  default: break;
    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
    break;
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
  MVT::ValueType VT = N->getValueType(0);
  SDOperand PermMask = N->getOperand(2);
  unsigned NumElems = PermMask.getNumOperands();
  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
  i %= NumElems;
  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
    return (i == 0)
      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
    SDOperand Idx = PermMask.getOperand(i);
    if (Idx.getOpcode() == ISD::UNDEF)
      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
  }
  return SDOperand();
}

/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + an offset.
static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
  unsigned Opc = N->getOpcode();
    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
      return true;
    }
  } else if (Opc == ISD::ADD) {
    SDOperand N1 = N->getOperand(0);
    SDOperand N2 = N->getOperand(1);
    if (isGAPlusOffset(N1.Val, GA, Offset)) {
      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
      if (V) {
        Offset += V->getSignExtended();
        return true;
      }
    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
      if (V) {
        Offset += V->getSignExtended();
        return true;
      }
    }
  }
  return false;
}

/// isConsecutiveLoad - Returns true if N is loading from an address of Base
/// + Dist * Size.
static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
                              MachineFrameInfo *MFI) {
  if (N->getOperand(0).Val != Base->getOperand(0).Val)
    return false;

  SDOperand Loc = N->getOperand(1);
  SDOperand BaseLoc = Base->getOperand(1);
  if (Loc.getOpcode() == ISD::FrameIndex) {
    if (BaseLoc.getOpcode() != ISD::FrameIndex)
      return false;
    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
    int FS  = MFI->getObjectSize(FI);
    int BFS = MFI->getObjectSize(BFI);
    if (FS != BFS || FS != Size) return false;
    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
  } else {
    GlobalValue *GV1 = NULL;
    GlobalValue *GV2 = NULL;
    int64_t Offset1 = 0;
    int64_t Offset2 = 0;
    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
    if (isGA1 && isGA2 && GV1 == GV2)
      return Offset1 == (Offset2 + Dist*Size);
  }

  return false;
}

static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
                              const X86Subtarget *Subtarget) {
  GlobalValue *GV;
  int64_t Offset;
  if (isGAPlusOffset(Base, GV, Offset))
    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
  else {
    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
    if (BFI < 0)
      // Fixed objects do not specify alignment, however the offsets are known.
      return ((Subtarget->getStackAlignment() % 16) == 0 &&
              (MFI->getObjectOffset(BFI) % 16) == 0);
    else
      return MFI->getObjectAlignment(BFI) >= 16;