Skip to content
LangRef.rst 276 KiB
Newer Older
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
| In0 | In1 | Out |
+-----+-----+-----+
|   0 |   0 |   0 |
+-----+-----+-----+
|   0 |   1 |   1 |
+-----+-----+-----+
|   1 |   0 |   1 |
+-----+-----+-----+
|   1 |   1 |   0 |
+-----+-----+-----+

Example:
""""""""

.. code-block:: llvm

      <result> = xor i32 4, %var         ; yields {i32}:result = 4 ^ %var
      <result> = xor i32 15, 40          ; yields {i32}:result = 39
      <result> = xor i32 4, 8            ; yields {i32}:result = 12
      <result> = xor i32 %V, -1          ; yields {i32}:result = ~%V

Vector Operations
-----------------

LLVM supports several instructions to represent vector operations in a
target-independent manner. These instructions cover the element-access
and vector-specific operations needed to process vectors effectively.
While LLVM does directly support these vector operations, many
sophisticated algorithms will want to use target-specific intrinsics to
take full advantage of a specific target.

.. _i_extractelement:

'``extractelement``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = extractelement <n x <ty>> <val>, i32 <idx>    ; yields <ty>

Overview:
"""""""""

The '``extractelement``' instruction extracts a single scalar element
from a vector at a specified index.

Arguments:
""""""""""

The first operand of an '``extractelement``' instruction is a value of
:ref:`vector <t_vector>` type. The second operand is an index indicating
the position from which to extract the element. The index may be a
variable.

Semantics:
""""""""""

The result is a scalar of the same type as the element type of ``val``.
Its value is the value at position ``idx`` of ``val``. If ``idx``
exceeds the length of ``val``, the results are undefined.

Example:
""""""""

.. code-block:: llvm

      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32

.. _i_insertelement:

'``insertelement``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    ; yields <n x <ty>>

Overview:
"""""""""

The '``insertelement``' instruction inserts a scalar element into a
vector at a specified index.

Arguments:
""""""""""

The first operand of an '``insertelement``' instruction is a value of
:ref:`vector <t_vector>` type. The second operand is a scalar value whose
type must equal the element type of the first operand. The third operand
is an index indicating the position at which to insert the value. The
index may be a variable.

Semantics:
""""""""""

The result is a vector of the same type as ``val``. Its element values
are those of ``val`` except at position ``idx``, where it gets the value
``elt``. If ``idx`` exceeds the length of ``val``, the results are
undefined.

Example:
""""""""

.. code-block:: llvm

      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>

.. _i_shufflevector:

'``shufflevector``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>

Overview:
"""""""""

The '``shufflevector``' instruction constructs a permutation of elements
from two input vectors, returning a vector with the same element type as
the input and length that is the same as the shuffle mask.

Arguments:
""""""""""

The first two operands of a '``shufflevector``' instruction are vectors
with the same type. The third argument is a shuffle mask whose element
type is always 'i32'. The result of the instruction is a vector whose
length is the same as the shuffle mask and whose element type is the
same as the element type of the first two operands.

The shuffle mask operand is required to be a constant vector with either
constant integer or undef values.

Semantics:
""""""""""

The elements of the two input vectors are numbered from left to right
across both of the vectors. The shuffle mask operand specifies, for each
element of the result vector, which element of the two input vectors the
result element gets. The element selector may be undef (meaning "don't
care") and the second operand may be undef if performing a shuffle from
only one vector.

Example:
""""""""

.. code-block:: llvm

      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>

Aggregate Operations
--------------------

LLVM supports several instructions for working with
:ref:`aggregate <t_aggregate>` values.

.. _i_extractvalue:

'``extractvalue``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*

Overview:
"""""""""

The '``extractvalue``' instruction extracts the value of a member field
from an :ref:`aggregate <t_aggregate>` value.

Arguments:
""""""""""

The first operand of an '``extractvalue``' instruction is a value of
:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
constant indices to specify which value to extract in a similar manner
as indices in a '``getelementptr``' instruction.

The major differences to ``getelementptr`` indexing are:

-  Since the value being indexed is not a pointer, the first index is
   omitted and assumed to be zero.
-  At least one index must be specified.
-  Not only struct indices but also array indices must be in bounds.

Semantics:
""""""""""

The result is the value at the position in the aggregate specified by
the index operands.

Example:
""""""""

.. code-block:: llvm

      <result> = extractvalue {i32, float} %agg, 0    ; yields i32

.. _i_insertvalue:

'``insertvalue``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>

Overview:
"""""""""

The '``insertvalue``' instruction inserts a value into a member field in
an :ref:`aggregate <t_aggregate>` value.

Arguments:
""""""""""

The first operand of an '``insertvalue``' instruction is a value of
:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
a first-class value to insert. The following operands are constant
indices indicating the position at which to insert the value in a
similar manner as indices in a '``extractvalue``' instruction. The value
to insert must have the same type as the value identified by the
indices.

Semantics:
""""""""""

The result is an aggregate of the same type as ``val``. Its value is
that of ``val`` except that the value at the position specified by the
indices is that of ``elt``.

Example:
""""""""

.. code-block:: llvm

      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
      %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    ; yields {i32 1, float %val}

.. _memoryops:

Memory Access and Addressing Operations
---------------------------------------

A key design point of an SSA-based representation is how it represents
memory. In LLVM, no memory locations are in SSA form, which makes things
very simple. This section describes how to read, write, and allocate
memory in LLVM.

.. _i_alloca:

'``alloca``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>]     ; yields {type*}:result

Overview:
"""""""""

The '``alloca``' instruction allocates memory on the stack frame of the
currently executing function, to be automatically released when this
function returns to its caller. The object is always allocated in the
generic address space (address space zero).

Arguments:
""""""""""

The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
bytes of memory on the runtime stack, returning a pointer of the
appropriate type to the program. If "NumElements" is specified, it is
the number of elements allocated, otherwise "NumElements" is defaulted
to be one. If a constant alignment is specified, the value result of the
allocation is guaranteed to be aligned to at least that boundary. If not
specified, or if zero, the target can choose to align the allocation on
any convenient boundary compatible with the type.

'``type``' may be any sized type.

Semantics:
""""""""""

Memory is allocated; a pointer is returned. The operation is undefined
if there is insufficient stack space for the allocation. '``alloca``'d
memory is automatically released when the function returns. The
'``alloca``' instruction is commonly used to represent automatic
variables that must have an address available. When the function returns
(either with the ``ret`` or ``resume`` instructions), the memory is
reclaimed. Allocating zero bytes is legal, but the result is undefined.
The order in which memory is allocated (ie., which way the stack grows)
is not specified.

Example:
""""""""

.. code-block:: llvm

      %ptr = alloca i32                             ; yields {i32*}:ptr
      %ptr = alloca i32, i32 4                      ; yields {i32*}:ptr
      %ptr = alloca i32, i32 4, align 1024          ; yields {i32*}:ptr
      %ptr = alloca i32, align 1024                 ; yields {i32*}:ptr

.. _i_load:

'``load``' Instruction
^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
      <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
      !<index> = !{ i32 1 }

Overview:
"""""""""

The '``load``' instruction is used to read from memory.

Arguments:
""""""""""

The argument to the '``load``' instruction specifies the memory address
from which to load. The pointer must point to a :ref:`first
class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
then the optimizer is not allowed to modify the number or order of
execution of this ``load`` with other :ref:`volatile
operations <volatile>`.

If the ``load`` is marked as ``atomic``, it takes an extra
:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
``release`` and ``acq_rel`` orderings are not valid on ``load``
instructions. Atomic loads produce :ref:`defined <memmodel>` results
when they may see multiple atomic stores. The type of the pointee must
be an integer type whose bit width is a power of two greater than or
equal to eight and less than or equal to a target-specific size limit.
``align`` must be explicitly specified on atomic loads, and the load has
undefined behavior if the alignment is not set to a value which is at
least the size in bytes of the pointee. ``!nontemporal`` does not have
any defined semantics for atomic loads.

The optional constant ``align`` argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted ``align`` argument means that the operation has the abi
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in undefined behavior. Underestimating the alignment
may produce less efficient code. An alignment of 1 is always safe.

The optional ``!nontemporal`` metadata must reference a single
metatadata name <index> corresponding to a metadata node with one
``i32`` entry of value 1. The existence of the ``!nontemporal``
metatadata on the instruction tells the optimizer and code generator
that this load is not expected to be reused in the cache. The code
generator may select special instructions to save cache bandwidth, such
as the ``MOVNT`` instruction on x86.

The optional ``!invariant.load`` metadata must reference a single
metatadata name <index> corresponding to a metadata node with no
entries. The existence of the ``!invariant.load`` metatadata on the
instruction tells the optimizer and code generator that this load
address points to memory which does not change value during program
execution. The optimizer may then move this load around, for example, by
hoisting it out of loops using loop invariant code motion.

Semantics:
""""""""""

The location of memory pointed to is loaded. If the value being loaded
is of scalar type then the number of bytes read does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, loading an ``i24`` reads at most three bytes. When loading a
value of a type like ``i20`` with a size that is not an integral number
of bytes, the result is undefined if the value was not originally
written using a store of the same type.

Examples:
"""""""""

.. code-block:: llvm

      %ptr = alloca i32                               ; yields {i32*}:ptr
      store i32 3, i32* %ptr                          ; yields {void}
      %val = load i32* %ptr                           ; yields {i32}:val = i32 3

.. _i_store:

'``store``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields {void}
      store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields {void}

Overview:
"""""""""

The '``store``' instruction is used to write to memory.

Arguments:
""""""""""

There are two arguments to the '``store``' instruction: a value to store
and an address at which to store it. The type of the '``<pointer>``'
operand must be a pointer to the :ref:`first class <t_firstclass>` type of
the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
then the optimizer is not allowed to modify the number or order of
execution of this ``store`` with other :ref:`volatile
operations <volatile>`.

If the ``store`` is marked as ``atomic``, it takes an extra
:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
instructions. Atomic loads produce :ref:`defined <memmodel>` results
when they may see multiple atomic stores. The type of the pointee must
be an integer type whose bit width is a power of two greater than or
equal to eight and less than or equal to a target-specific size limit.
``align`` must be explicitly specified on atomic stores, and the store
has undefined behavior if the alignment is not set to a value which is
at least the size in bytes of the pointee. ``!nontemporal`` does not
have any defined semantics for atomic stores.

The optional constant "align" argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0
or an omitted "align" argument means that the operation has the abi
alignment for the target. It is the responsibility of the code emitter
to ensure that the alignment information is correct. Overestimating the
alignment results in an undefined behavior. Underestimating the
alignment may produce less efficient code. An alignment of 1 is always
safe.

The optional !nontemporal metadata must reference a single metatadata
name <index> corresponding to a metadata node with one i32 entry of
value 1. The existence of the !nontemporal metatadata on the instruction
tells the optimizer and code generator that this load is not expected to
be reused in the cache. The code generator may select special
instructions to save cache bandwidth, such as the MOVNT instruction on
x86.

Semantics:
""""""""""

The contents of memory are updated to contain '``<value>``' at the
location specified by the '``<pointer>``' operand. If '``<value>``' is
of scalar type then the number of bytes written does not exceed the
minimum number of bytes needed to hold all bits of the type. For
example, storing an ``i24`` writes at most three bytes. When writing a
value of a type like ``i20`` with a size that is not an integral number
of bytes, it is unspecified what happens to the extra bits that do not
belong to the type, but they will typically be overwritten.

Example:
""""""""

.. code-block:: llvm

      %ptr = alloca i32                               ; yields {i32*}:ptr
      store i32 3, i32* %ptr                          ; yields {void}
      %val = load i32* %ptr                           ; yields {i32}:val = i32 3

.. _i_fence:

'``fence``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      fence [singlethread] <ordering>                   ; yields {void}

Overview:
"""""""""

The '``fence``' instruction is used to introduce happens-before edges
between operations.

Arguments:
""""""""""

'``fence``' instructions take an :ref:`ordering <ordering>` argument which
defines what *synchronizes-with* edges they add. They can only be given
``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.

Semantics:
""""""""""

A fence A which has (at least) ``release`` ordering semantics
*synchronizes with* a fence B with (at least) ``acquire`` ordering
semantics if and only if there exist atomic operations X and Y, both
operating on some atomic object M, such that A is sequenced before X, X
modifies M (either directly or through some side effect of a sequence
headed by X), Y is sequenced before B, and Y observes M. This provides a
*happens-before* dependency between A and B. Rather than an explicit
``fence``, one (but not both) of the atomic operations X or Y might
provide a ``release`` or ``acquire`` (resp.) ordering constraint and
still *synchronize-with* the explicit ``fence`` and establish the
*happens-before* edge.

A ``fence`` which has ``seq_cst`` ordering, in addition to having both
``acquire`` and ``release`` semantics specified above, participates in
the global program order of other ``seq_cst`` operations and/or fences.

The optional ":ref:`singlethread <singlethread>`" argument specifies
that the fence only synchronizes with other fences in the same thread.
(This is useful for interacting with signal handlers.)

Example:
""""""""

.. code-block:: llvm

      fence acquire                          ; yields {void}
      fence singlethread seq_cst             ; yields {void}

.. _i_cmpxchg:

'``cmpxchg``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering>  ; yields {ty}

Overview:
"""""""""

The '``cmpxchg``' instruction is used to atomically modify memory. It
loads a value in memory and compares it to a given value. If they are
equal, it stores a new value into the memory.

Arguments:
""""""""""

There are three arguments to the '``cmpxchg``' instruction: an address
to operate on, a value to compare to the value currently be at that
address, and a new value to place at that address if the compared values
are equal. The type of '<cmp>' must be an integer type whose bit width
is a power of two greater than or equal to eight and less than or equal
to a target-specific size limit. '<cmp>' and '<new>' must have the same
type, and the type of '<pointer>' must be a pointer to that type. If the
``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
to modify the number or order of execution of this ``cmpxchg`` with
other :ref:`volatile operations <volatile>`.

The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
synchronizes with other atomic operations.

The optional "``singlethread``" argument declares that the ``cmpxchg``
is only atomic with respect to code (usually signal handlers) running in
the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
respect to all other code in the system.

The pointer passed into cmpxchg must have alignment greater than or
equal to the size in memory of the operand.

Semantics:
""""""""""

The contents of memory at the location specified by the '``<pointer>``'
operand is read and compared to '``<cmp>``'; if the read value is the
equal, '``<new>``' is written. The original value at the location is
returned.

A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
atomic load with an ordering parameter determined by dropping any
``release`` part of the ``cmpxchg``'s ordering.

Example:
""""""""

.. code-block:: llvm

    entry:
      %orig = atomic load i32* %ptr unordered                   ; yields {i32}
      br label %loop

    loop:
      %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
      %squared = mul i32 %cmp, %cmp
      %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          ; yields {i32}
      %success = icmp eq i32 %cmp, %old
      br i1 %success, label %done, label %loop

    done:
      ...

.. _i_atomicrmw:

'``atomicrmw``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields {ty}

Overview:
"""""""""

The '``atomicrmw``' instruction is used to atomically modify memory.

Arguments:
""""""""""

There are three arguments to the '``atomicrmw``' instruction: an
operation to apply, an address whose value to modify, an argument to the
operation. The operation must be one of the following keywords:

-  xchg
-  add
-  sub
-  and
-  nand
-  or
-  xor
-  max
-  min
-  umax
-  umin

The type of '<value>' must be an integer type whose bit width is a power
of two greater than or equal to eight and less than or equal to a
target-specific size limit. The type of the '``<pointer>``' operand must
be a pointer to that type. If the ``atomicrmw`` is marked as
``volatile``, then the optimizer is not allowed to modify the number or
order of execution of this ``atomicrmw`` with other :ref:`volatile
operations <volatile>`.

Semantics:
""""""""""

The contents of memory at the location specified by the '``<pointer>``'
operand are atomically read, modified, and written back. The original
value at the location is returned. The modification is specified by the
operation argument:

-  xchg: ``*ptr = val``
-  add: ``*ptr = *ptr + val``
-  sub: ``*ptr = *ptr - val``
-  and: ``*ptr = *ptr & val``
-  nand: ``*ptr = ~(*ptr & val)``
-  or: ``*ptr = *ptr | val``
-  xor: ``*ptr = *ptr ^ val``
-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
   comparison)
-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
   comparison)

Example:
""""""""

.. code-block:: llvm

      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields {i32}

.. _i_getelementptr:

'``getelementptr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
      <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
      <result> = getelementptr <ptr vector> ptrval, <vector index type> idx

Overview:
"""""""""

The '``getelementptr``' instruction is used to get the address of a
subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
address calculation only and does not access memory.

Arguments:
""""""""""

The first argument is always a pointer or a vector of pointers, and
forms the basis of the calculation. The remaining arguments are indices
that indicate which of the elements of the aggregate object are indexed.
The interpretation of each index is dependent on the type being indexed
into. The first index always indexes the pointer value given as the
first argument, the second index indexes a value of the type pointed to
(not necessarily the value directly pointed to, since the first index
can be non-zero), etc. The first type indexed into must be a pointer
value, subsequent types can be arrays, vectors, and structs. Note that
subsequent types being indexed into can never be pointers, since that
would require loading the pointer before continuing calculation.

The type of each index argument depends on the type it is indexing into.
When indexing into a (optionally packed) structure, only ``i32`` integer
**constants** are allowed (when using a vector of indices they must all
be the **same** ``i32`` integer constant). When indexing into an array,
pointer or vector, integers of any width are allowed, and they are not
required to be constant. These integers are treated as signed values
where relevant.

For example, let's consider a C code fragment and how it gets compiled
to LLVM:

.. code-block:: c

    struct RT {
      char A;
      int B[10][20];
      char C;
    };
    struct ST {
      int X;
      double Y;
      struct RT Z;
    };

    int *foo(struct ST *s) {
      return &s[1].Z.B[5][13];
    }

The LLVM code generated by Clang is:

.. code-block:: llvm

    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
    %struct.ST = type { i32, double, %struct.RT }

    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
    entry:
      %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
      ret i32* %arrayidx
    }

Semantics:
""""""""""

In the example above, the first index is indexing into the
'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
= '``{ i32, double, %struct.RT }``' type, a structure. The second index
indexes into the third element of the structure, yielding a
'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
structure. The third index indexes into the second element of the
structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
dimensions of the array are subscripted into, yielding an '``i32``'
type. The '``getelementptr``' instruction returns a pointer to this
element, thus computing a value of '``i32*``' type.

Note that it is perfectly legal to index partially through a structure,
returning a pointer to an inner element. Because of this, the LLVM code
for the given testcase is equivalent to:

.. code-block:: llvm

    define i32* @foo(%struct.ST* %s) {
      %t1 = getelementptr %struct.ST* %s, i32 1                 ; yields %struct.ST*:%t1
      %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         ; yields %struct.RT*:%t2
      %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         ; yields [10 x [20 x i32]]*:%t3
      %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
      %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        ; yields i32*:%t5
      ret i32* %t5
    }

If the ``inbounds`` keyword is present, the result value of the
``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
pointer is not an *in bounds* address of an allocated object, or if any
of the addresses that would be formed by successive addition of the
offsets implied by the indices to the base address with infinitely
precise signed arithmetic are not an *in bounds* address of that
allocated object. The *in bounds* addresses for an allocated object are
all the addresses that point into the object, plus the address one byte
past the end. In cases where the base is a vector of pointers the
``inbounds`` keyword applies to each of the computations element-wise.

If the ``inbounds`` keyword is not present, the offsets are added to the
base address with silently-wrapping two's complement arithmetic. If the
offsets have a different width from the pointer, they are sign-extended
or truncated to the width of the pointer. The result value of the
``getelementptr`` may be outside the object pointed to by the base
pointer. The result value may not necessarily be used to access memory
though, even if it happens to point into allocated storage. See the
:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
information.

The getelementptr instruction is often confusing. For some more insight
into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.

Example:
""""""""

.. code-block:: llvm

        ; yields [12 x i8]*:aptr
        %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
        ; yields i8*:vptr
        %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
        ; yields i8*:eptr
        %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
        ; yields i32*:iptr
        %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0

In cases where the pointer argument is a vector of pointers, each index
must be a vector with the same number of elements. For example:

.. code-block:: llvm

     %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,

Conversion Operations
---------------------

The instructions in this category are the conversion instructions
(casting) which all take a single operand and a type. They perform
various bit conversions on the operand.

'``trunc .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = trunc <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``trunc``' instruction truncates its operand to the type ``ty2``.

Arguments:
""""""""""

The '``trunc``' instruction takes a value to trunc, and a type to trunc
it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
of the same number of integers. The bit size of the ``value`` must be
larger than the bit size of the destination type, ``ty2``. Equal sized
types are not allowed.

Semantics:
""""""""""

The '``trunc``' instruction truncates the high order bits in ``value``
and converts the remaining bits to ``ty2``. Since the source size must
be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
It will always truncate bits.

Example:
""""""""

.. code-block:: llvm

      %X = trunc i32 257 to i8                        ; yields i8:1
      %Y = trunc i32 123 to i1                        ; yields i1:true
      %Z = trunc i32 122 to i1                        ; yields i1:false
      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>

'``zext .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = zext <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``zext``' instruction zero extends its operand to type ``ty2``.

Arguments:
""""""""""

The '``zext``' instruction takes a value to cast, and a type to cast it
to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
the same number of integers. The bit size of the ``value`` must be
smaller than the bit size of the destination type, ``ty2``.

Semantics:
""""""""""

The ``zext`` fills the high order bits of the ``value`` with zero bits
until it reaches the size of the destination type, ``ty2``.

When zero extending from i1, the result will always be either 0 or 1.

Example:
""""""""

.. code-block:: llvm

      %X = zext i32 257 to i64              ; yields i64:257
      %Y = zext i1 true to i32              ; yields i32:1
      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

'``sext .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = sext <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``sext``' sign extends ``value`` to the type ``ty2``.

Arguments:
""""""""""

The '``sext``' instruction takes a value to cast, and a type to cast it
to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
the same number of integers. The bit size of the ``value`` must be
smaller than the bit size of the destination type, ``ty2``.

Semantics:
""""""""""

The '``sext``' instruction performs a sign extension by copying the sign
bit (highest order bit) of the ``value`` until it reaches the bit size
of the type ``ty2``.

When sign extending from i1, the extension always results in -1 or 0.

Example:
""""""""

.. code-block:: llvm

      %X = sext i8  -1 to i16              ; yields i16   :65535
      %Y = sext i1 true to i32             ; yields i32:-1
      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

'``fptrunc .. to``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2

Overview:
"""""""""

The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.

Arguments:
""""""""""