Newer
Older
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(8, getPointerTy()));
}
// Now store the XMM (fp + vector) parameter registers.
FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
DAG.getConstant(VarArgsFPOffset, getPointerTy()));
for (; NumXMMRegs != 8; ++NumXMMRegs) {
unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
X86::VR128RegisterClass);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(16, getPointerTy()));
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOps[0], MemOps.size());
}
ArgValues.push_back(Root);
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = 0; // Callee pops nothing.
BytesCallerReserves = ArgOffset;
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand
X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
unsigned NumIntRegs = 0; // Int regs used for parameter passing.
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned GPR8ArgRegs[] = {
X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B
};
static const unsigned GPR16ArgRegs[] = {
X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W
};
static const unsigned GPR32ArgRegs[] = {
X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
};
static const unsigned GPR64ArgRegs[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
switch (ArgVT) {
default: assert(0 && "Unknown value type!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (NumIntRegs < 6)
++NumIntRegs;
else
NumBytes += 8;
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 8)
NumXMMRegs++;
else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
NumBytes += 8;
else {
// XMM arguments have to be aligned on 16-byte boundary.
NumBytes = ((NumBytes + 15) / 16) * 16;
NumBytes += 16;
}
break;
}
}
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
NumIntRegs = 0;
NumXMMRegs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
switch (ArgVT) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (NumIntRegs < 6) {
unsigned Reg = 0;
switch (ArgVT) {
default: break;
case MVT::i8: Reg = GPR8ArgRegs[NumIntRegs]; break;
case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
}
RegsToPass.push_back(std::make_pair(Reg, Arg));
++NumIntRegs;
} else {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
ArgOffset += 8;
}
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 8) {
RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
NumXMMRegs++;
} else {
if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
// XMM arguments have to be aligned on 16-byte boundary.
ArgOffset = ((ArgOffset + 15) / 16) * 16;
}
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
ArgOffset += 8;
else
ArgOffset += 16;
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
if (isVarArg) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
Chain = DAG.getCopyToReg(Chain, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!((Subtarget->isTargetCygwin() || Subtarget->isTargetWindows()) &&
WindowsGVRequiresExtraLoad(G->getGlobal())))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.Val)
Ops.push_back(InFlag);
// FIXME: Do not generate X86ISD::TAILCALL for now.
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(0, getPointerTy()));
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
break;
case MVT::i64:
if (Op.Val->getValueType(1) == MVT::i64) {
// FIXME: __int128 support?
Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i64);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
}
NodeTys.push_back(MVT::i64);
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
// FIXME: long double support?
Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(RetVT);
break;
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//
// The X86 'fast' calling convention passes up to two integer arguments in
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
// and requires that the callee pop its arguments off the stack (allowing proper
// tail calls), and has the same return value conventions as C calling convs.
//
// This calling convention always arranges for the callee pop value to be 8n+4
// bytes, which is needed for tail recursion elimination and stack alignment
// reasons.
//
// Note that this can be enhanced in the future to pass fp vals in registers
// (when we have a global fp allocator) and do other tricks.
//
/// HowToPassFastCCArgument - Returns how an formal argument of the specified
/// type should be passed. If it is through stack, returns the size of the stack
/// slot; if it is through integer or XMM register, returns the number of
/// integer or XMM registers are needed.
Evan Cheng
committed
static void
HowToPassFastCCArgument(MVT::ValueType ObjectVT,
unsigned NumIntRegs, unsigned NumXMMRegs,
unsigned &ObjSize, unsigned &ObjIntRegs,
unsigned &ObjXMMRegs) {
Evan Cheng
committed
ObjSize = 0;
Evan Cheng
committed
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
Evan Cheng
committed
#if FASTCC_NUM_INT_ARGS_INREGS > 0
Evan Cheng
committed
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
Evan Cheng
committed
else
Evan Cheng
committed
#endif
Evan Cheng
committed
ObjSize = 1;
break;
case MVT::i16:
Evan Cheng
committed
#if FASTCC_NUM_INT_ARGS_INREGS > 0
Evan Cheng
committed
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
Evan Cheng
committed
else
Evan Cheng
committed
#endif
Evan Cheng
committed
ObjSize = 2;
break;
case MVT::i32:
Evan Cheng
committed
#if FASTCC_NUM_INT_ARGS_INREGS > 0
Evan Cheng
committed
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
Evan Cheng
committed
else
Evan Cheng
committed
#endif
Evan Cheng
committed
ObjSize = 4;
break;
case MVT::i64:
Evan Cheng
committed
#if FASTCC_NUM_INT_ARGS_INREGS > 0
Evan Cheng
committed
if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
Evan Cheng
committed
} else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
Evan Cheng
committed
ObjSize = 4;
} else
Evan Cheng
committed
#endif
Evan Cheng
committed
ObjSize = 8;
case MVT::f32:
ObjSize = 4;
break;
case MVT::f64:
ObjSize = 8;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 4)
ObjXMMRegs = 1;
else
ObjSize = 16;
break;
Evan Cheng
committed
}
}
SDOperand
X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues()-1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
Evan Cheng
committed
// Add DAG nodes to load the arguments... On entry to a function the stack
// frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first nonreg argument (leftmost lexically)
// [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
Evan Cheng
committed
// ...
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
// Keep track of the number of integer regs passed so far. This can be either
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
// used).
unsigned NumIntRegs = 0;
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
unsigned ObjIntRegs = 0;
unsigned ObjXMMRegs = 0;
HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
ObjSize, ObjIntRegs, ObjXMMRegs);
ArgIncrement = ObjSize;
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
SDOperand ArgValue;
if (ObjIntRegs || ObjXMMRegs) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
X86::GR8RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
break;
case MVT::i16:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
X86::GR16RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
break;
case MVT::i32:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
break;
case MVT::i64:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
if (ObjIntRegs == 2) {
Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
Evan Cheng
committed
}
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
break;
NumIntRegs += ObjIntRegs;
NumXMMRegs += ObjXMMRegs;
}
if (ObjSize) {
// XMM arguments have to be aligned on 16-byte boundary.
if (ObjSize == 16)
ArgOffset = ((ArgOffset + 15) / 16) * 16;
// Create the SelectionDAG nodes corresponding to a load from this
// parameter.
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
if (ObjectVT == MVT::i64 && ObjIntRegs) {
SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
} else
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgOffset += ArgIncrement; // Move on to the next argument.
Evan Cheng
committed
}
ArgValues.push_back(ArgValue);
ArgValues.push_back(Root);
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
// arguments and the arguments after the retaddr has been pushed are aligned.
if ((ArgOffset & 7) == 0)
ArgOffset += 4;
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments.
BytesCallerReserves = 0;
// Finally, inform the code generator which regs we return values in.
switch (getValueType(MF.getFunction()->getReturnType())) {
default: assert(0 && "Unknown type!");
case MVT::isVoid: break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
MF.addLiveOut(X86::EAX);
break;
case MVT::i64:
MF.addLiveOut(X86::EAX);
MF.addLiveOut(X86::EDX);
break;
case MVT::f32:
case MVT::f64:
MF.addLiveOut(X86::ST0);
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
MF.addLiveOut(X86::XMM0);
break;
}
Chris Lattner
committed
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
bool isFastCall) {
SDOperand Chain = Op.getOperand(0);
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
// Keep track of the number of integer regs passed so far. This can be either
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
// used).
unsigned NumIntRegs = 0;
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned GPRArgRegs[][2] = {
{ X86::AL, X86::DL },
{ X86::AX, X86::DX },
{ X86::EAX, X86::EDX }
};
static const unsigned FastCallGPRArgRegs[][2] = {
{ X86::CL, X86::DL },
{ X86::CX, X86::DX },
{ X86::ECX, X86::EDX }
};
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unknown value type!");
case MVT::i8:
case MVT::i16:
unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
if (NumIntRegs < MaxNumIntRegs) {
++NumIntRegs;
break;
}
case MVT::f32:
NumBytes += 4;
break;
case MVT::f64:
NumBytes += 8;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
if (isFastCall) {
assert(0 && "Unknown value type!");
} else {
if (NumXMMRegs < 4)
NumXMMRegs++;
else {
// XMM arguments have to be aligned on 16-byte boundary.
NumBytes = ((NumBytes + 15) / 16) * 16;
NumBytes += 16;
}
}
break;
}
}
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
// arguments and the arguments after the retaddr has been pushed are aligned.
if ((NumBytes & 7) == 0)
NumBytes += 4;
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
NumIntRegs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
if (NumIntRegs < MaxNumIntRegs) {
RegsToPass.push_back(
std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
Arg));
++NumIntRegs;
break;
}
case MVT::f32: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 4;
break;
}
case MVT::f64: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
break;
}
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
if (isFastCall) {
assert(0 && "Unexpected ValueType for argument!");
} else {
if (NumXMMRegs < 4) {
RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
NumXMMRegs++;
} else {
// XMM arguments have to be aligned on 16-byte boundary.
ArgOffset = ((ArgOffset + 15) / 16) * 16;
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 16;
}
}
break;
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!((Subtarget->isTargetCygwin() || Subtarget->isTargetWindows()) &&
WindowsGVRequiresExtraLoad(G->getGlobal())))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
Ops.push_back(InFlag);
// FIXME: Do not generate X86ISD::TAILCALL for now.
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
if (Op.Val->getValueType(1) == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (isFastCall) {
assert(0 && "Unknown value type to return!");
} else {
Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(RetVT);
}
break;
case MVT::f32:
case MVT::f64: {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(InFlag);
SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
&Ops[0], Ops.size());
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
if (X86ScalarSSE) {
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys.clear();
Ops.clear();
Ops.push_back(RetVal);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(RetVT));
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
Chain = RetVal.getValue(1);
if (RetVT == MVT::f32 && !X86ScalarSSE)
// FIXME: we would really like to remember that this FP_ROUND
// operation is okay to eliminate if we allow excess FP precision.
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
ResultVals.push_back(RetVal);
NodeTys.push_back(RetVT);
break;
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
//===----------------------------------------------------------------------===//
// StdCall Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
/// type should be passed. Returns the size of the stack slot
static void
HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8: ObjSize = 1; break;
case MVT::i16: ObjSize = 2; break;
case MVT::i32: ObjSize = 4; break;
case MVT::i64: ObjSize = 8; break;
case MVT::f32: ObjSize = 4; break;
case MVT::f64: ObjSize = 8; break;
}
}
SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues() - 1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function on the X86,
// the stack frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first argument (leftmost lexically)
// [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
// ...
//
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
HowToPassStdCallCCArgument(ObjectVT, ObjSize);
if (ObjSize > 4)
ArgIncrement = ObjSize;
SDOperand ArgValue;
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
ArgValues.push_back(ArgValue);
ArgOffset += ArgIncrement; // Move on to the next argument...
}
ArgValues.push_back(Root);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
BytesToPopOnReturn = 0; // Callee pops nothing.
BytesCallerReserves = ArgOffset;
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
} else {
BytesToPopOnReturn = ArgOffset; // Callee pops everything..
BytesCallerReserves = 0;
}
RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
ReturnAddrIndex = 0; // No return address slot generated yet.
MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
NumBytes += 4;
break;
case MVT::i64:
case MVT::f64:
NumBytes += 8;
break;
}
}
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16: {
// Promote the integer to 32 bits. If the input type is signed use a
// sign extend, otherwise use a zero extend.
unsigned ExtOp =
dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
}
// Fallthrough
case MVT::i32:
case MVT::f32: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 4;
break;
}
case MVT::i64:
case MVT::f64: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
break;
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!((Subtarget->isTargetCygwin() || Subtarget->isTargetWindows()) &&
WindowsGVRequiresExtraLoad(G->getGlobal())))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain