Newer
Older
Evan Cheng
committed
case X86::FsXORPSrr:
return NULL;
}
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
return foldMemoryOperand(MF, MI, Ops[0], MOs);
}
Evan Cheng
committed
MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
MachineInstr *MI,
SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// Check switch flag
if (NoFusing) return NULL;
// Determine the alignment of the load.
Evan Cheng
committed
unsigned Alignment = 0;
if (LoadMI->hasOneMemOperand())
Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng
committed
// FIXME: Move alignment requirement into tables?
if (Alignment < 16) {
switch (MI->getOpcode()) {
default: break;
// Not always safe to fold movsd into these instructions since their load
// folding variants expects the address to be 16 byte aligned.
case X86::FsANDNPDrr:
case X86::FsANDNPSrr:
case X86::FsANDPDrr:
case X86::FsANDPSrr:
case X86::FsORPDrr:
case X86::FsORPSrr:
case X86::FsXORPDrr:
case X86::FsXORPSrr:
return NULL;
}
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
SmallVector<MachineOperand,4> MOs;
unsigned NumOps = LoadMI->getDesc().getNumOperands();
for (unsigned i = NumOps - 4; i != NumOps; ++i)
MOs.push_back(LoadMI->getOperand(i));
return foldMemoryOperand(MF, MI, Ops[0], MOs);
}
bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
// Check switch flag
if (NoFusing) return 0;
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
switch (MI->getOpcode()) {
default: return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
return true;
}
}
if (Ops.size() != 1)
return false;
unsigned OpNum = Ops[0];
unsigned Opc = MI->getOpcode();
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
case X86::MOV16r0:
case X86::MOV32r0:
case X86::MOV64r0:
case X86::MOV8r0:
return true;
default: break;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned*, unsigned>::iterator I =
OpcodeTablePtr->find((unsigned*)Opc);
if (I != OpcodeTablePtr->end())
return true;
}
return false;
}
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
SmallVector<MachineOperand,4> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (Op.isRegister() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 5; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isRegister())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
MachineInstrBuilder MIB(DataMI);
if (FoldedStore)
MIB.addReg(Reg, true);
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
if (FoldedLoad)
MIB.addReg(Reg);
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, AfterOps[i]);
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
MachineOperand &MO = ImpOps[i];
MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
unsigned NewOpc = 0;
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP32ri:
case X86::CMP16ri:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.getImm() == 0) {
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
std::vector<SDOperand> AddrOps;
std::vector<SDOperand> BeforeOps;
std::vector<SDOperand> AfterOps;
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDOperand Op = N->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
SDOperand Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = 0;
if (FoldedLoad) {
MVT VT = *RC->vt_begin();
Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Load);
}
// Emit the data processing instruction.
std::vector<MVT> VTs;
const TargetRegisterClass *DstRC = 0;
if (TID.getNumDefs() > 0) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
DstRC = DstTOI.isLookupPtrRegClass()
? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDOperand(Load, 0));
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDOperand(NewNode, 0));
AddrOps.push_back(Chain);
SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Store);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
return I->second.first;
}
bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
if (MBB.empty()) return false;
switch (MBB.back().getOpcode()) {
case X86::TCRETURNri:
case X86::TCRETURNdi:
Evan Cheng
committed
case X86::RET: // Return.
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm:
case X86::JMP: // Uncond branch.
case X86::JMP32r: // Indirect branch.
case X86::JMP64r: // Indirect branch (64-bit).
case X86::JMP32m: // Indirect branch through mem.
case X86::JMP64m: // Indirect branch through mem (64-bit).
return true;
default: return false;
}
}
bool X86InstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
return false;
}
const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
if (Subtarget->is64Bit())
return &X86::GR64RegClass;
else
return &X86::GR32RegClass;
}
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
switch (Desc->TSFlags & X86II::ImmMask) {
case X86II::Imm8: return 1;
case X86II::Imm16: return 2;
case X86II::Imm32: return 4;
case X86II::Imm64: return 8;
default: assert(0 && "Immediate size not set!");
return 0;
}
}
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
/// e.g. r8, xmm8, etc.
bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
if (!MO.isRegister()) return false;
switch (MO.getReg()) {
default: break;
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
return true;
}
return false;
}
/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
unsigned REX = 0;
const TargetInstrDesc &Desc = MI.getDesc();
// Pseudo instructions do not need REX prefix byte.
if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
return 0;
if (Desc.TSFlags & X86II::REX_W)
REX |= 1 << 3;
unsigned NumOps = Desc.getNumOperands();
if (NumOps) {
bool isTwoAddr = NumOps > 1 &&
Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
unsigned i = isTwoAddr ? 1 : 0;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isRegister()) {
unsigned Reg = MO.getReg();
if (isX86_64NonExtLowByteReg(Reg))
REX |= 0x40;
}
}
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= (1 << 0) | (1 << 2);
break;
case X86II::MRMSrcReg: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 2;
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (isX86_64ExtendedReg(MO))
REX |= 1 << 0;
}
break;
}
case X86II::MRMSrcMem: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 2;
unsigned Bit = 0;
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isRegister()) {
if (isX86_64ExtendedReg(MO))
REX |= 1 << Bit;
Bit++;
}
}
break;
}
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m:
case X86II::MRMDestMem: {
unsigned e = isTwoAddr ? 5 : 4;
i = isTwoAddr ? 1 : 0;
if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
REX |= 1 << 2;
unsigned Bit = 0;
for (; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isRegister()) {
if (isX86_64ExtendedReg(MO))
REX |= 1 << Bit;
Bit++;
}
}
break;
}
default: {
if (isX86_64ExtendedReg(MI.getOperand(0)))
REX |= 1 << 0;
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MachineOperand& MO = MI.getOperand(i);
if (isX86_64ExtendedReg(MO))
REX |= 1 << 2;
}
break;
}
}
}
return REX;
}
/// sizePCRelativeBlockAddress - This method returns the size of a PC
/// relative block address instruction
///
static unsigned sizePCRelativeBlockAddress() {
return 4;
}
/// sizeGlobalAddress - Give the size of the emission of this global address
///
static unsigned sizeGlobalAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeConstPoolAddress - Give the size of the emission of this constant
/// pool address
///
static unsigned sizeConstPoolAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeExternalSymbolAddress - Give the size of the emission of this external
/// symbol
///
static unsigned sizeExternalSymbolAddress(bool dword) {
return dword ? 8 : 4;
}
/// sizeJumpTableAddress - Give the size of the emission of this jump
/// table address
///
static unsigned sizeJumpTableAddress(bool dword) {
return dword ? 8 : 4;
}
static unsigned sizeConstant(unsigned Size) {
return Size;
}
static unsigned sizeRegModRMByte(){
return 1;
}
static unsigned sizeSIBByte(){
return 1;
}
static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
unsigned FinalSize = 0;
// If this is a simple integer displacement that doesn't require a relocation.
if (!RelocOp) {
FinalSize += sizeConstant(4);
return FinalSize;
}
// Otherwise, this is something that requires a relocation.
if (RelocOp->isGlobalAddress()) {
FinalSize += sizeGlobalAddress(false);
} else if (RelocOp->isConstantPoolIndex()) {
FinalSize += sizeConstPoolAddress(false);
} else if (RelocOp->isJumpTableIndex()) {
FinalSize += sizeJumpTableAddress(false);
} else {
assert(0 && "Unknown value to relocate!");
}
return FinalSize;
}
static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
bool IsPIC, bool Is64BitMode) {
const MachineOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MachineOperand *DispForReloc = 0;
unsigned FinalSize = 0;
// Figure out what sort of displacement we have to handle here.
if (Op3.isGlobalAddress()) {
DispForReloc = &Op3;
} else if (Op3.isConstantPoolIndex()) {
if (Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal = 1;
}
} else if (Op3.isJumpTableIndex()) {
if (Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal = 1;
}
} else {
DispVal = 1;
}
const MachineOperand &Base = MI.getOperand(Op);
const MachineOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// Is a SIB byte needed?
if (IndexReg.getReg() == 0 &&
(BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
if (BaseReg == 0) { // Just a displacement?
// Emit special case [disp32] encoding
++FinalSize;
FinalSize += getDisplacementFieldSize(DispForReloc);
} else {
unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
++FinalSize;
// Be pessimistic and assume it's a disp32, not a disp8
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
++FinalSize;
FinalSize += getDisplacementFieldSize(DispForReloc);
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
if (BaseReg == 0 || DispForReloc) {
// Emit the normal disp32 encoding.
++FinalSize;
ForceDisp32 = true;
} else {
++FinalSize;
}
FinalSize += sizeSIBByte();
// Do we need to output a displacement?
if (DispVal != 0 || ForceDisp32) {
FinalSize += getDisplacementFieldSize(DispForReloc);
}
}
return FinalSize;
}
static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
const TargetInstrDesc *Desc,
bool IsPIC, bool Is64BitMode) {
unsigned Opcode = Desc->Opcode;
unsigned FinalSize = 0;
// Emit the lock opcode prefix as needed.
if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
// Emit the repeat opcode prefix as needed.
if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
// Emit the operand size opcode prefix as needed.
if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
// Emit the address size opcode prefix as needed.
if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
bool Need0FPrefix = false;
switch (Desc->TSFlags & X86II::Op0Mask) {
case X86II::TB: // Two-byte opcode prefix
case X86II::T8: // 0F 38
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
case X86II::REP: break; // already handled.
case X86II::XS: // F3 0F
++FinalSize;
Need0FPrefix = true;
break;
case X86II::XD: // F2 0F
++FinalSize;
Need0FPrefix = true;
break;
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
++FinalSize;
break; // Two-byte opcode prefix
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
}
if (Is64BitMode) {
// REX prefix
unsigned REX = X86InstrInfo::determineREX(MI);
if (REX)
++FinalSize;
}
// 0x0F escape code must be emitted just before the opcode.
if (Need0FPrefix)
++FinalSize;
switch (Desc->TSFlags & X86II::Op0Mask) {
case X86II::T8: // 0F 38
++FinalSize;
break;
case X86II::TA: // 0F 3A
++FinalSize;
break;
}
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc->getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
CurOp++;
switch (Desc->TSFlags & X86II::FormMask) {
default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
// Remember the current PC offset, this is the PIC relocation
// base address.
switch (Opcode) {
default:
break;
case TargetInstrInfo::INLINEASM: {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
FinalSize += AI->getInlineAsmLength(AsmStr);
break;
}
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
break;
case TargetInstrInfo::IMPLICIT_DEF:
case TargetInstrInfo::DECLARE:
case X86::DWARF_LOC:
case X86::FP_REG_KILL:
break;
case X86::MOVPC32r: {
// This emits the "call" portion of this pseudo instruction.
++FinalSize;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
break;
}
}
CurOp = NumOps;
break;
case X86II::RawFrm:
++FinalSize;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
if (MO.isMachineBasicBlock()) {
FinalSize += sizePCRelativeBlockAddress();
} else if (MO.isGlobalAddress()) {
FinalSize += sizeGlobalAddress(false);
} else if (MO.isExternalSymbol()) {
FinalSize += sizeExternalSymbolAddress(false);
} else if (MO.isImmediate()) {
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
} else {
assert(0 && "Unknown RawFrm operand!");
}
}
break;
case X86II::AddRegFrm:
++FinalSize;
Nicolas Geoffray
committed
++CurOp;
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImmediate())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri)
dword = true;
if (MO1.isGlobalAddress()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isExternalSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isConstantPoolIndex())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJumpTableIndex())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRMDestReg: {
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRMDestMem: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += 5;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRMSrcReg:
++FinalSize;
FinalSize += sizeRegModRMByte();
CurOp += 2;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
case X86II::MRMSrcMem: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
CurOp += 5;
Nicolas Geoffray
committed
if (CurOp != NumOps) {
++CurOp;
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffray
committed
}
break;
}
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
++FinalSize;
Nicolas Geoffray
committed
++CurOp;
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
FinalSize += sizeRegModRMByte();
if (CurOp != NumOps) {
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO1.isImmediate())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64ri32)
dword = true;
if (MO1.isGlobalAddress()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO1.isExternalSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO1.isConstantPoolIndex())
FinalSize += sizeConstPoolAddress(dword);
else if (MO1.isJumpTableIndex())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
++FinalSize;
FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
CurOp += 4;
if (CurOp != NumOps) {
const MachineOperand &MO = MI.getOperand(CurOp++);
unsigned Size = X86InstrInfo::sizeOfImm(Desc);
if (MO.isImmediate())
FinalSize += sizeConstant(Size);
else {
bool dword = false;
if (Opcode == X86::MOV64mi32)
dword = true;
if (MO.isGlobalAddress()) {
FinalSize += sizeGlobalAddress(dword);
} else if (MO.isExternalSymbol())
FinalSize += sizeExternalSymbolAddress(dword);
else if (MO.isConstantPoolIndex())
FinalSize += sizeConstPoolAddress(dword);
else if (MO.isJumpTableIndex())
FinalSize += sizeJumpTableAddress(dword);
}
}
break;
}
case X86II::MRMInitReg:
++FinalSize;
// Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
FinalSize += sizeRegModRMByte();
++CurOp;
break;
}
if (!Desc->isVariadic() && CurOp != NumOps) {
cerr << "Cannot determine size: ";
MI.dump();
cerr << '\n';
abort();
}
return FinalSize;
}
unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const TargetInstrDesc &Desc = MI->getDesc();
bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
if (Desc.getOpcode() == X86::MOVPC32r) {
Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
}
return Size;
}