Newer
Older
Asm->OutStreamer.EmitDwarfFileDirective(i, FullPath.str());
/// endModule - Emit all Dwarf sections that should come after the content.
void DwarfDebug::endModule() {
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
const Module *M = MMI->getModule();
if (NamedMDNode *AllSPs = M->getNamedMetadata("llvm.dbg.sp")) {
for (unsigned SI = 0, SE = AllSPs->getNumOperands(); SI != SE; ++SI) {
if (ProcessedSPNodes.count(AllSPs->getOperand(SI)) != 0) continue;
DISubprogram SP(AllSPs->getOperand(SI));
if (!SP.Verify()) continue;
// Collect info for variables that were optimized out.
StringRef FName = SP.getLinkageName();
if (FName.empty())
FName = SP.getName();
NamedMDNode *NMD =
M->getNamedMetadata(Twine("llvm.dbg.lv.", getRealLinkageName(FName)));
if (!NMD) continue;
unsigned E = NMD->getNumOperands();
if (!E) continue;
DbgScope *Scope = new DbgScope(NULL, DIDescriptor(SP), NULL);
for (unsigned I = 0; I != E; ++I) {
DIVariable DV(NMD->getOperand(I));
if (!DV.Verify()) continue;
Scope->addVariable(new DbgVariable(DV));
}
// Construct subprogram DIE and add variables DIEs.
constructSubprogramDIE(SP);
DIE *ScopeDIE = getCompileUnit(SP)->getDIE(SP);
const SmallVector<DbgVariable *, 8> &Variables = Scope->getVariables();
for (unsigned i = 0, N = Variables.size(); i < N; ++i) {
DIE *VariableDIE = constructVariableDIE(Variables[i], Scope);
if (VariableDIE)
ScopeDIE->addChild(VariableDIE);
}
}
}
// Attach DW_AT_inline attribute with inlined subprogram DIEs.
for (SmallPtrSet<DIE *, 4>::iterator AI = InlinedSubprogramDIEs.begin(),
AE = InlinedSubprogramDIEs.end(); AI != AE; ++AI) {
DIE *ISP = *AI;
addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined);
for (DenseMap<DIE *, const MDNode *>::iterator CI = ContainingTypeMap.begin(),
Devang Patel
committed
CE = ContainingTypeMap.end(); CI != CE; ++CI) {
DIE *SPDie = CI->first;
const MDNode *N = dyn_cast_or_null<MDNode>(CI->second);
Devang Patel
committed
if (!N) continue;
DIE *NDie = getCompileUnit(N)->getDIE(N);
Devang Patel
committed
if (!NDie) continue;
addDIEEntry(SPDie, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4, NDie);
}
// Standard sections final addresses.
Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getTextSection());
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("text_end"));
Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getDataSection());
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("data_end"));
// End text sections.
for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) {
Asm->OutStreamer.SwitchSection(SectionMap[i]);
Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("section_end", i));
// Emit common frame information.
emitCommonDebugFrame();
// Emit function debug frame information
for (std::vector<FunctionDebugFrameInfo>::iterator I = DebugFrames.begin(),
E = DebugFrames.end(); I != E; ++I)
emitFunctionDebugFrame(*I);
// Compute DIE offsets and sizes.
computeSizeAndOffsets();
// Emit source line correspondence into a debug line section.
emitDebugLines();
// Emit all the DIEs into a debug info section
emitDebugInfo();
// Corresponding abbreviations into a abbrev section.
emitAbbreviations();
// Emit info into a debug pubnames section.
emitDebugPubNames();
// Emit info into a debug pubtypes section.
emitDebugPubTypes();
// Emit info into a debug loc section.
emitDebugLoc();
// Emit info into a debug aranges section.
EmitDebugARanges();
// Emit info into a debug ranges section.
emitDebugRanges();
// Emit info into a debug macinfo section.
emitDebugMacInfo();
emitDebugInlineInfo();
// Emit info into a debug str section.
emitDebugStr();
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
E = CUMap.end(); I != E; ++I)
delete I->second;
FirstCU = NULL; // Reset for the next Module, if any.
/// findAbstractVariable - Find abstract variable, if any, associated with Var.
DbgVariable *DwarfDebug::findAbstractVariable(DIVariable &Var,
DebugLoc ScopeLoc) {
Devang Patel
committed
DbgVariable *AbsDbgVariable = AbstractVariables.lookup(Var);
Devang Patel
committed
if (AbsDbgVariable)
return AbsDbgVariable;
LLVMContext &Ctx = Var->getContext();
DbgScope *Scope = AbstractScopes.lookup(ScopeLoc.getScope(Ctx));
Devang Patel
committed
if (!Scope)
return NULL;
AbsDbgVariable = new DbgVariable(Var);
Devang Patel
committed
Scope->addVariable(AbsDbgVariable);
AbstractVariables[Var] = AbsDbgVariable;
Devang Patel
committed
return AbsDbgVariable;
}
/// collectVariableInfoFromMMITable - Collect variable information from
/// side table maintained by MMI.
void
DwarfDebug::collectVariableInfoFromMMITable(const MachineFunction * MF,
SmallPtrSet<const MDNode *, 16> &Processed) {
const LLVMContext &Ctx = Asm->MF->getFunction()->getContext();
MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
VE = VMap.end(); VI != VE; ++VI) {
Devang Patel
committed
Processed.insert(Var);
DIVariable DV(Var);
const std::pair<unsigned, DebugLoc> &VP = VI->second;
DbgScope *Scope = 0;
if (const MDNode *IA = VP.second.getInlinedAt(Ctx))
Scope = ConcreteScopes.lookup(IA);
if (Scope == 0)
Scope = DbgScopeMap.lookup(VP.second.getScope(Ctx));
// If variable scope is not found then skip this variable.
if (Scope == 0)
DbgVariable *AbsDbgVariable = findAbstractVariable(DV, VP.second);
DbgVariable *RegVar = new DbgVariable(DV);
recordVariableFrameIndex(RegVar, VP.first);
Scope->addVariable(RegVar);
if (AbsDbgVariable) {
recordVariableFrameIndex(AbsDbgVariable, VP.first);
VarToAbstractVarMap[RegVar] = AbsDbgVariable;
}
}
/// isDbgValueInUndefinedReg - Return true if debug value, encoded by
/// DBG_VALUE instruction, is in undefined reg.
static bool isDbgValueInUndefinedReg(const MachineInstr *MI) {
assert (MI->isDebugValue() && "Invalid DBG_VALUE machine instruction!");
if (MI->getOperand(0).isReg() && !MI->getOperand(0).getReg())
return true;
return false;
}
/// isDbgValueInDefinedReg - Return true if debug value, encoded by
/// DBG_VALUE instruction, is in a defined reg.
static bool isDbgValueInDefinedReg(const MachineInstr *MI) {
assert (MI->isDebugValue() && "Invalid DBG_VALUE machine instruction!");
if (MI->getOperand(0).isReg() && MI->getOperand(0).getReg())
return true;
return false;
}
/// collectVariableInfo - Populate DbgScope entries with variables' info.
void
DwarfDebug::collectVariableInfo(const MachineFunction *MF,
SmallPtrSet<const MDNode *, 16> &Processed) {
/// collection info from MMI table.
collectVariableInfoFromMMITable(MF, Processed);
Devang Patel
committed
Devang Patel
committed
// Collect variable information from DBG_VALUE machine instructions;
for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
Devang Patel
committed
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
const MachineInstr *MInsn = II;
if (!MInsn->isDebugValue() || isDbgValueInUndefinedReg(MInsn))
Devang Patel
committed
continue;
Devang Patel
committed
// This is a collection of DBV_VALUE instructions describing same variable.
SmallVector<const MachineInstr *, 4> MultipleValues;
for(SmallVector<const MachineInstr *, 8>::iterator I = DbgValues.begin(),
E = DbgValues.end(); I != E; ++I) {
const MachineInstr *MInsn = *I;
MultipleValues.clear();
if (isDbgValueInDefinedReg(MInsn))
MultipleValues.push_back(MInsn);
DIVariable DV(MInsn->getOperand(MInsn->getNumOperands() - 1).getMetadata());
if (Processed.count(DV) != 0)
continue;
Devang Patel
committed
const MachineInstr *PrevMI = MInsn;
for (SmallVector<const MachineInstr *, 8>::iterator MI = I+1,
ME = DbgValues.end(); MI != ME; ++MI) {
const MDNode *Var =
(*MI)->getOperand((*MI)->getNumOperands()-1).getMetadata();
if (Var == DV && isDbgValueInDefinedReg(*MI) &&
!PrevMI->isIdenticalTo(*MI))
MultipleValues.push_back(*MI);
PrevMI = *MI;
bool CurFnArg = false;
if (DV.getTag() == dwarf::DW_TAG_arg_variable &&
DISubprogram(DV.getContext()).describes(MF->getFunction()))
CurFnArg = true;
if (!Scope && CurFnArg)
continue;
Processed.insert(DV);
DbgVariable *RegVar = new DbgVariable(DV);
Scope->addVariable(RegVar);
DbgVariableLabelsMap[RegVar] = getLabelBeforeInsn(MInsn);
if (DbgVariable *AbsVar = findAbstractVariable(DV, MInsn->getDebugLoc())) {
DbgVariableToDbgInstMap[AbsVar] = MInsn;
VarToAbstractVarMap[RegVar] = AbsVar;
Devang Patel
committed
}
if (MultipleValues.size() <= 1) {
DbgVariableToDbgInstMap[RegVar] = MInsn;
continue;
}
// handle multiple DBG_VALUE instructions describing one variable.
if (DotDebugLocEntries.empty())
RegVar->setDotDebugLocOffset(0);
else
RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
const MachineInstr *Begin = NULL;
const MachineInstr *End = NULL;
for (SmallVector<const MachineInstr *, 4>::iterator
MVI = MultipleValues.begin(), MVE = MultipleValues.end(); MVI != MVE; ++MVI) {
if (!Begin) {
Begin = *MVI;
continue;
}
End = *MVI;
MLoc.set(Begin->getOperand(0).getReg(), 0);
const MCSymbol *FLabel = getLabelBeforeInsn(Begin);
const MCSymbol *SLabel = getLabelBeforeInsn(End);
DotDebugLocEntries.push_back(DotDebugLocEntry(FLabel, SLabel, MLoc));
Begin = End;
if (MVI + 1 == MVE) {
// If End is the last instruction then its value is valid
// until the end of the funtion.
MLoc.set(End->getOperand(0).getReg(), 0);
DotDebugLocEntries.
push_back(DotDebugLocEntry(SLabel, FunctionEndSym, MLoc));
}
}
DotDebugLocEntries.push_back(DotDebugLocEntry());
Devang Patel
committed
}
Devang Patel
committed
// Collect info for variables that were optimized out.
const Function *F = MF->getFunction();
const Module *M = F->getParent();
if (NamedMDNode *NMD =
M->getNamedMetadata(Twine("llvm.dbg.lv.",
getRealLinkageName(F->getName())))) {
Devang Patel
committed
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
DIVariable DV(cast_or_null<MDNode>(NMD->getOperand(i)));
Devang Patel
committed
continue;
DbgScope *Scope = DbgScopeMap.lookup(DV.getContext());
if (Scope)
Scope->addVariable(new DbgVariable(DV));
Devang Patel
committed
}
}
}
/// getLabelBeforeInsn - Return Label preceding the instruction.
const MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
LabelsBeforeInsn.find(MI);
if (I == LabelsBeforeInsn.end())
// FunctionBeginSym always preceeds all the instruction in current function.
return FunctionBeginSym;
return I->second;
}
Devang Patel
committed
/// getLabelAfterInsn - Return Label immediately following the instruction.
const MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
LabelsAfterInsn.find(MI);
if (I == LabelsAfterInsn.end())
return NULL;
return I->second;
}
Devang Patel
committed
/// beginScope - Process beginning of a scope.
void DwarfDebug::beginScope(const MachineInstr *MI) {
if (InsnNeedsLabel.count(MI) == 0) {
LabelsBeforeInsn[MI] = PrevLabel;
return;
}
Devang Patel
committed
// Check location.
DebugLoc DL = MI->getDebugLoc();
if (!DL.isUnknown()) {
const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
PrevLabel = recordSourceLine(DL.getLine(), DL.getCol(), Scope);
PrevInstLoc = DL;
LabelsBeforeInsn[MI] = PrevLabel;
Devang Patel
committed
return;
Devang Patel
committed
// If location is unknown then use temp label for this DBG_VALUE
// instruction.
if (MI->isDebugValue()) {
Devang Patel
committed
PrevLabel = MMI->getContext().CreateTempSymbol();
Asm->OutStreamer.EmitLabel(PrevLabel);
LabelsBeforeInsn[MI] = PrevLabel;
return;
Devang Patel
committed
}
Devang Patel
committed
if (UnknownLocations) {
PrevLabel = recordSourceLine(0, 0, 0);
LabelsBeforeInsn[MI] = PrevLabel;
return;
}
assert (0 && "Instruction is not processed!");
/// endScope - Process end of a scope.
void DwarfDebug::endScope(const MachineInstr *MI) {
if (InsnsEndScopeSet.count(MI) != 0) {
// Emit a label if this instruction ends a scope.
MCSymbol *Label = MMI->getContext().CreateTempSymbol();
Asm->OutStreamer.EmitLabel(Label);
Devang Patel
committed
LabelsAfterInsn[MI] = Label;
Devang Patel
committed
/// getOrCreateDbgScope - Create DbgScope for the scope.
DbgScope *DwarfDebug::getOrCreateDbgScope(const MDNode *Scope, const MDNode *InlinedAt) {
if (!InlinedAt) {
DbgScope *WScope = DbgScopeMap.lookup(Scope);
if (WScope)
Devang Patel
committed
return WScope;
WScope = new DbgScope(NULL, DIDescriptor(Scope), NULL);
DbgScopeMap.insert(std::make_pair(Scope, WScope));
Devang Patel
committed
if (DIDescriptor(Scope).isLexicalBlock()) {
DbgScope *Parent =
getOrCreateDbgScope(DILexicalBlock(Scope).getContext(), NULL);
Devang Patel
committed
WScope->setParent(Parent);
Parent->addScope(WScope);
}
if (!WScope->getParent()) {
StringRef SPName = DISubprogram(Scope).getLinkageName();
// We used to check only for a linkage name, but that fails
// since we began omitting the linkage name for private
// functions. The new way is to check for the name in metadata,
// but that's not supported in old .ll test cases. Ergo, we
// check both.
Stuart Hastings
committed
if (SPName == Asm->MF->getFunction()->getName() ||
DISubprogram(Scope).getFunction() == Asm->MF->getFunction())
Devang Patel
committed
CurrentFnDbgScope = WScope;
}
return WScope;
getOrCreateAbstractScope(Scope);
DbgScope *WScope = DbgScopeMap.lookup(InlinedAt);
if (WScope)
Devang Patel
committed
return WScope;
WScope = new DbgScope(NULL, DIDescriptor(Scope), InlinedAt);
DbgScopeMap.insert(std::make_pair(InlinedAt, WScope));
DILocation DL(InlinedAt);
Devang Patel
committed
DbgScope *Parent =
getOrCreateDbgScope(DL.getScope(), DL.getOrigLocation());
Devang Patel
committed
WScope->setParent(Parent);
Parent->addScope(WScope);
ConcreteScopes[InlinedAt] = WScope;
return WScope;
}
/// hasValidLocation - Return true if debug location entry attached with
/// machine instruction encodes valid location info.
static bool hasValidLocation(LLVMContext &Ctx,
const MachineInstr *MInsn,
const MDNode *&Scope, const MDNode *&InlinedAt) {
Devang Patel
committed
DebugLoc DL = MInsn->getDebugLoc();
if (DL.isUnknown()) return false;
const MDNode *S = DL.getScope(Ctx);
Devang Patel
committed
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
// There is no need to create another DIE for compile unit. For all
// other scopes, create one DbgScope now. This will be translated
// into a scope DIE at the end.
if (DIScope(S).isCompileUnit()) return false;
Scope = S;
InlinedAt = DL.getInlinedAt(Ctx);
return true;
}
/// calculateDominanceGraph - Calculate dominance graph for DbgScope
/// hierarchy.
static void calculateDominanceGraph(DbgScope *Scope) {
assert (Scope && "Unable to calculate scop edominance graph!");
SmallVector<DbgScope *, 4> WorkStack;
WorkStack.push_back(Scope);
unsigned Counter = 0;
while (!WorkStack.empty()) {
DbgScope *WS = WorkStack.back();
const SmallVector<DbgScope *, 4> &Children = WS->getScopes();
bool visitedChildren = false;
for (SmallVector<DbgScope *, 4>::const_iterator SI = Children.begin(),
SE = Children.end(); SI != SE; ++SI) {
DbgScope *ChildScope = *SI;
if (!ChildScope->getDFSOut()) {
WorkStack.push_back(ChildScope);
visitedChildren = true;
ChildScope->setDFSIn(++Counter);
break;
}
}
if (!visitedChildren) {
WorkStack.pop_back();
WS->setDFSOut(++Counter);
}
}
Devang Patel
committed
/// printDbgScopeInfo - Print DbgScope info for each machine instruction.
static
void printDbgScopeInfo(LLVMContext &Ctx, const MachineFunction *MF,
DenseMap<const MachineInstr *, DbgScope *> &MI2ScopeMap)
{
#ifndef NDEBUG
unsigned PrevDFSIn = 0;
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
const MachineInstr *MInsn = II;
const MDNode *Scope = NULL;
const MDNode *InlinedAt = NULL;
Devang Patel
committed
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
// Check if instruction has valid location information.
if (hasValidLocation(Ctx, MInsn, Scope, InlinedAt)) {
dbgs() << " [ ";
if (InlinedAt)
dbgs() << "*";
DenseMap<const MachineInstr *, DbgScope *>::iterator DI =
MI2ScopeMap.find(MInsn);
if (DI != MI2ScopeMap.end()) {
DbgScope *S = DI->second;
dbgs() << S->getDFSIn();
PrevDFSIn = S->getDFSIn();
} else
dbgs() << PrevDFSIn;
} else
dbgs() << " [ x" << PrevDFSIn;
dbgs() << " ]";
MInsn->dump();
}
dbgs() << "\n";
}
#endif
}
/// extractScopeInformation - Scan machine instructions in this function
/// and collect DbgScopes. Return true, if at least one scope was found.
bool DwarfDebug::extractScopeInformation() {
Devang Patel
committed
// If scope information was extracted using .dbg intrinsics then there is not
// any need to extract these information by scanning each instruction.
if (!DbgScopeMap.empty())
return false;
// Scan each instruction and create scopes. First build working set of scopes.
Devang Patel
committed
LLVMContext &Ctx = Asm->MF->getFunction()->getContext();
SmallVector<DbgRange, 4> MIRanges;
DenseMap<const MachineInstr *, DbgScope *> MI2ScopeMap;
const MDNode *PrevScope = NULL;
const MDNode *PrevInlinedAt = NULL;
Devang Patel
committed
const MachineInstr *RangeBeginMI = NULL;
const MachineInstr *PrevMI = NULL;
for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
Devang Patel
committed
I != E; ++I) {
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
const MachineInstr *MInsn = II;
const MDNode *Scope = NULL;
const MDNode *InlinedAt = NULL;
Devang Patel
committed
// Check if instruction has valid location information.
if (!hasValidLocation(Ctx, MInsn, Scope, InlinedAt)) {
PrevMI = MInsn;
continue;
}
// If scope has not changed then skip this instruction.
if (Scope == PrevScope && PrevInlinedAt == InlinedAt) {
PrevMI = MInsn;
continue;
}
Devang Patel
committed
if (RangeBeginMI) {
// If we have alread seen a beginning of a instruction range and
// current instruction scope does not match scope of first instruction
// in this range then create a new instruction range.
DbgRange R(RangeBeginMI, PrevMI);
MI2ScopeMap[RangeBeginMI] = getOrCreateDbgScope(PrevScope, PrevInlinedAt);
MIRanges.push_back(R);
}
Devang Patel
committed
// This is a beginning of a new instruction range.
RangeBeginMI = MInsn;
Devang Patel
committed
// Reset previous markers.
PrevMI = MInsn;
PrevScope = Scope;
PrevInlinedAt = InlinedAt;
Devang Patel
committed
}
}
Devang Patel
committed
// Create last instruction range.
if (RangeBeginMI && PrevMI && PrevScope) {
DbgRange R(RangeBeginMI, PrevMI);
MIRanges.push_back(R);
MI2ScopeMap[RangeBeginMI] = getOrCreateDbgScope(PrevScope, PrevInlinedAt);
}
if (!CurrentFnDbgScope)
return false;
Devang Patel
committed
calculateDominanceGraph(CurrentFnDbgScope);
if (PrintDbgScope)
printDbgScopeInfo(Ctx, Asm->MF, MI2ScopeMap);
// Find ranges of instructions covered by each DbgScope;
DbgScope *PrevDbgScope = NULL;
for (SmallVector<DbgRange, 4>::const_iterator RI = MIRanges.begin(),
RE = MIRanges.end(); RI != RE; ++RI) {
const DbgRange &R = *RI;
DbgScope *S = MI2ScopeMap.lookup(R.first);
assert (S && "Lost DbgScope for a machine instruction!");
if (PrevDbgScope && !PrevDbgScope->dominates(S))
PrevDbgScope->closeInsnRange(S);
S->openInsnRange(R.first);
S->extendInsnRange(R.second);
PrevDbgScope = S;
}
if (PrevDbgScope)
PrevDbgScope->closeInsnRange();
Devang Patel
committed
Devang Patel
committed
/// identifyScopeMarkers() -
/// Each DbgScope has first instruction and last instruction to mark beginning
/// and end of a scope respectively. Create an inverse map that list scopes
/// starts (and ends) with an instruction. One instruction may start (or end)
/// multiple scopes. Ignore scopes that are not reachable.
Devang Patel
committed
SmallVector<DbgScope *, 4> WorkList;
WorkList.push_back(CurrentFnDbgScope);
while (!WorkList.empty()) {
DbgScope *S = WorkList.pop_back_val();
Devang Patel
committed
Jeffrey Yasskin
committed
const SmallVector<DbgScope *, 4> &Children = S->getScopes();
Devang Patel
committed
if (!Children.empty())
Jeffrey Yasskin
committed
for (SmallVector<DbgScope *, 4>::const_iterator SI = Children.begin(),
Devang Patel
committed
SE = Children.end(); SI != SE; ++SI)
WorkList.push_back(*SI);
if (S->isAbstractScope())
continue;
Devang Patel
committed
const SmallVector<DbgRange, 4> &Ranges = S->getRanges();
if (Ranges.empty())
continue;
for (SmallVector<DbgRange, 4>::const_iterator RI = Ranges.begin(),
RE = Ranges.end(); RI != RE; ++RI) {
assert(RI->first && "DbgRange does not have first instruction!");
assert(RI->second && "DbgRange does not have second instruction!");
Devang Patel
committed
InsnsEndScopeSet.insert(RI->second);
}
Devang Patel
committed
}
}
/// FindFirstDebugLoc - Find the first debug location in the function. This
/// is intended to be an approximation for the source position of the
/// beginning of the function.
static DebugLoc FindFirstDebugLoc(const MachineFunction *MF) {
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I)
for (MachineBasicBlock::const_iterator MBBI = I->begin(), MBBE = I->end();
MBBI != MBBE; ++MBBI) {
DebugLoc DL = MBBI->getDebugLoc();
if (!DL.isUnknown())
return DL;
}
return DebugLoc();
}
/// beginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void DwarfDebug::beginFunction(const MachineFunction *MF) {
Chris Lattner
committed
if (!MMI->hasDebugInfo()) return;
if (!extractScopeInformation()) return;
Devang Patel
committed
FunctionBeginSym = Asm->GetTempSymbol("func_begin",
Asm->getFunctionNumber());
// Assumes in correct section after the entry point.
Devang Patel
committed
Asm->OutStreamer.EmitLabel(FunctionBeginSym);
// Emit label for the implicitly defined dbg.stoppoint at the start of the
// function.
DebugLoc FDL = FindFirstDebugLoc(MF);
if (FDL.isUnknown()) return;
const MDNode *Scope = FDL.getScope(MF->getFunction()->getContext());
DISubprogram SP = getDISubprogram(Scope);
unsigned Line, Col;
if (SP.Verify()) {
Line = SP.getLineNumber();
Col = 0;
} else {
Line = FDL.getLine();
Col = FDL.getCol();
}
recordSourceLine(Line, Col, Scope);
/// ProcessedArgs - Collection of arguments already processed.
SmallPtrSet<const MDNode *, 8> ProcessedArgs;
DebugLoc PrevLoc;
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I)
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
const MachineInstr *MI = II;
DebugLoc DL = MI->getDebugLoc();
if (MI->isDebugValue()) {
assert (MI->getNumOperands() > 1 && "Invalid machine instruction!");
DIVariable DV(MI->getOperand(MI->getNumOperands() - 1).getMetadata());
if (!DV.Verify()) continue;
Devang Patel
committed
// If DBG_VALUE is for a local variable then it needs a label.
if (DV.getTag() != dwarf::DW_TAG_arg_variable)
InsnNeedsLabel.insert(MI);
Devang Patel
committed
// DBG_VALUE for inlined functions argument needs a label.
else if (!DISubprogram(DV.getContext()).describes(MF->getFunction()))
InsnNeedsLabel.insert(MI);
// DBG_VALUE indicating argument location change needs a label.
Devang Patel
committed
else if (isDbgValueInUndefinedReg(MI) == false && !ProcessedArgs.insert(DV))
InsnNeedsLabel.insert(MI);
} else {
// If location is unknown then instruction needs a location only if
// UnknownLocations flag is set.
if (DL.isUnknown()) {
if (UnknownLocations && !PrevLoc.isUnknown())
InsnNeedsLabel.insert(MI);
} else if (DL != PrevLoc)
// Otherwise, instruction needs a location only if it is new location.
InsnNeedsLabel.insert(MI);
}
if (!DL.isUnknown() || UnknownLocations)
PrevLoc = DL;
}
PrevLabel = FunctionBeginSym;
/// endFunction - Gather and emit post-function debug information.
void DwarfDebug::endFunction(const MachineFunction *MF) {
if (!MMI->hasDebugInfo() || DbgScopeMap.empty()) return;
Devang Patel
committed
Devang Patel
committed
// Define end label for subprogram.
FunctionEndSym = Asm->GetTempSymbol("func_end",
Asm->getFunctionNumber());
// Assumes in correct section after the entry point.
Asm->OutStreamer.EmitLabel(FunctionEndSym);
SmallPtrSet<const MDNode *, 16> ProcessedVars;
collectVariableInfo(MF, ProcessedVars);
// Get function line info.
if (!Lines.empty()) {
// Get section line info.
unsigned ID = SectionMap.insert(Asm->getCurrentSection());
if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
// Append the function info to section info.
SectionLineInfos.insert(SectionLineInfos.end(),
Lines.begin(), Lines.end());
}
// Construct abstract scopes.
for (SmallVector<DbgScope *, 4>::iterator AI = AbstractScopesList.begin(),
AE = AbstractScopesList.end(); AI != AE; ++AI) {
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
DISubprogram SP((*AI)->getScopeNode());
if (SP.Verify()) {
// Collect info for variables that were optimized out.
StringRef FName = SP.getLinkageName();
if (FName.empty())
FName = SP.getName();
const Module *M = MF->getFunction()->getParent();
if (NamedMDNode *NMD =
M->getNamedMetadata(Twine("llvm.dbg.lv.",
getRealLinkageName(FName)))) {
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
DIVariable DV(cast_or_null<MDNode>(NMD->getOperand(i)));
if (!DV || !ProcessedVars.insert(DV))
continue;
DbgScope *Scope = DbgScopeMap.lookup(DV.getContext());
if (Scope)
Scope->addVariable(new DbgVariable(DV));
}
}
}
}
Devang Patel
committed
DIE *CurFnDIE = constructScopeDIE(CurrentFnDbgScope);
Devang Patel
committed
if (!DisableFramePointerElim(*MF))
addUInt(CurFnDIE, dwarf::DW_AT_APPLE_omit_frame_ptr,
dwarf::DW_FORM_flag, 1);
DebugFrames.push_back(FunctionDebugFrameInfo(Asm->getFunctionNumber(),
InsnNeedsLabel.clear();
DbgVariableToFrameIndexMap.clear();
VarToAbstractVarMap.clear();
DbgVariableToDbgInstMap.clear();
DbgVariableLabelsMap.clear();
Jeffrey Yasskin
committed
DeleteContainerSeconds(DbgScopeMap);
InsnsEndScopeSet.clear();
Jeffrey Yasskin
committed
DeleteContainerSeconds(AbstractScopes);
Jeffrey Yasskin
committed
AbstractVariables.clear();
Devang Patel
committed
LabelsBeforeInsn.clear();
LabelsAfterInsn.clear();
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
/// recordVariableFrameIndex - Record a variable's index.
void DwarfDebug::recordVariableFrameIndex(const DbgVariable *V, int Index) {
assert (V && "Invalid DbgVariable!");
DbgVariableToFrameIndexMap[V] = Index;
}
/// findVariableFrameIndex - Return true if frame index for the variable
/// is found. Update FI to hold value of the index.
bool DwarfDebug::findVariableFrameIndex(const DbgVariable *V, int *FI) {
assert (V && "Invalid DbgVariable!");
DenseMap<const DbgVariable *, int>::iterator I =
DbgVariableToFrameIndexMap.find(V);
if (I == DbgVariableToFrameIndexMap.end())
return false;
*FI = I->second;
return true;
}
/// findVariableLabel - Find MCSymbol for the variable.
const MCSymbol *DwarfDebug::findVariableLabel(const DbgVariable *V) {
DenseMap<const DbgVariable *, const MCSymbol *>::iterator I
= DbgVariableLabelsMap.find(V);
if (I == DbgVariableLabelsMap.end())
return NULL;
else return I->second;
}
/// findDbgScope - Find DbgScope for the debug loc attached with an
/// instruction.
DbgScope *DwarfDebug::findDbgScope(const MachineInstr *MInsn) {
DbgScope *Scope = NULL;
LLVMContext &Ctx =
MInsn->getParent()->getParent()->getFunction()->getContext();
DebugLoc DL = MInsn->getDebugLoc();
if (DL.isUnknown())
return Scope;
if (const MDNode *IA = DL.getInlinedAt(Ctx))
Scope = ConcreteScopes.lookup(IA);
if (Scope == 0)
Scope = DbgScopeMap.lookup(DL.getScope(Ctx));
return Scope;
}
/// recordSourceLine - Register a source line with debug info. Returns the
/// unique label that was emitted and which provides correspondence to
/// the source line list.
MCSymbol *DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S) {
StringRef Dir;
StringRef Fn;
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
unsigned Src = 1;
if (S) {
DIDescriptor Scope(S);
if (Scope.isCompileUnit()) {
DICompileUnit CU(S);
Dir = CU.getDirectory();
Fn = CU.getFilename();
} else if (Scope.isSubprogram()) {
DISubprogram SP(S);
Dir = SP.getDirectory();
Fn = SP.getFilename();
} else if (Scope.isLexicalBlock()) {
DILexicalBlock DB(S);
Dir = DB.getDirectory();
Fn = DB.getFilename();
} else
assert(0 && "Unexpected scope info");
Src = GetOrCreateSourceID(Dir, Fn);
}
Stuart Hastings
committed
#if 0
if (!Lines.empty()) {
SrcLineInfo lastSrcLineInfo = Lines.back();
// Emitting sequential line records with the same line number (but
// different addresses) seems to confuse GDB. Avoid this.
if (lastSrcLineInfo.getLine() == Line)
return NULL;
}
#endif
MCSymbol *Label = MMI->getContext().CreateTempSymbol();
Lines.push_back(SrcLineInfo(Line, Col, Src, Label));
//===----------------------------------------------------------------------===//
// Emit Methods
//===----------------------------------------------------------------------===//
/// computeSizeAndOffset - Compute the size and offset of a DIE.
unsigned
DwarfDebug::computeSizeAndOffset(DIE *Die, unsigned Offset, bool Last) {
// Get the children.
const std::vector<DIE *> &Children = Die->getChildren();
// If not last sibling and has children then add sibling offset attribute.
if (!Last && !Children.empty())
Die->addSiblingOffset(DIEValueAllocator);
// Record the abbreviation.
assignAbbrevNumber(Die->getAbbrev());
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
// Set DIE offset
Die->setOffset(Offset);
// Start the size with the size of abbreviation code.
Offset += MCAsmInfo::getULEB128Size(AbbrevNumber);
const SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
// Size the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i)
// Size attribute value.
Offset += Values[i]->SizeOf(Asm, AbbrevData[i].getForm());
// Size the DIE children if any.
if (!Children.empty()) {
assert(Abbrev->getChildrenFlag() == dwarf::DW_CHILDREN_yes &&
"Children flag not set");
for (unsigned j = 0, M = Children.size(); j < M; ++j)
Offset = computeSizeAndOffset(Children[j], Offset, (j + 1) == M);
// End of children marker.
Offset += sizeof(int8_t);
}
Die->setSize(Offset - Die->getOffset());
return Offset;
/// computeSizeAndOffsets - Compute the size and offset of all the DIEs.
void DwarfDebug::computeSizeAndOffsets() {
unsigned PrevOffset = 0;
for (DenseMap<const MDNode *, CompileUnit *>::iterator I = CUMap.begin(),
E = CUMap.end(); I != E; ++I) {
// Compute size of compile unit header.
static unsigned Offset = PrevOffset +
sizeof(int32_t) + // Length of Compilation Unit Info
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t); // Pointer Size (in bytes)
computeSizeAndOffset(I->second->getCUDie(), Offset, true);
PrevOffset = Offset;
}
/// EmitSectionSym - Switch to the specified MCSection and emit an assembler
/// temporary label to it if SymbolStem is specified.
static MCSymbol *EmitSectionSym(AsmPrinter *Asm, const MCSection *Section,
Asm->OutStreamer.SwitchSection(Section);
MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
Asm->OutStreamer.EmitLabel(TmpSym);
return TmpSym;
}
/// EmitSectionLabels - Emit initial Dwarf sections with a label at
/// the start of each one.
void DwarfDebug::EmitSectionLabels() {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
// Dwarf sections base addresses.
if (Asm->MAI->doesDwarfRequireFrameSection()) {
DwarfFrameSectionSym =
EmitSectionSym(Asm, TLOF.getDwarfFrameSection(), "section_debug_frame");
}
DwarfInfoSectionSym =
EmitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
DwarfAbbrevSectionSym =
EmitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
EmitSectionSym(Asm, TLOF.getDwarfARangesSection());
if (const MCSection *MacroInfo = TLOF.getDwarfMacroInfoSection())
DwarfDebugLineSectionSym =
EmitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
EmitSectionSym(Asm, TLOF.getDwarfLocSection());
EmitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
EmitSectionSym(Asm, TLOF.getDwarfPubTypesSection());