Skip to content
Commit 309327a4 authored by Chris Lattner's avatar Chris Lattner
Browse files

Teach the instruction selector how to transform 'array' GEP computations into X86

scaled indexes.  This allows us to compile GEP's like this:

int* %test([10 x { int, { int } }]* %X, int %Idx) {
        %Idx = cast int %Idx to long
        %X = getelementptr [10 x { int, { int } }]* %X, long 0, long %Idx, ubyte 1, ubyte 0
        ret int* %X
}

Into a single address computation:

test:
        mov %EAX, DWORD PTR [%ESP + 4]
        mov %ECX, DWORD PTR [%ESP + 8]
        lea %EAX, DWORD PTR [%EAX + 8*%ECX + 4]
        ret

Before it generated:
test:
        mov %EAX, DWORD PTR [%ESP + 4]
        mov %ECX, DWORD PTR [%ESP + 8]
        shl %ECX, 3
        add %EAX, %ECX
        lea %EAX, DWORD PTR [%EAX + 4]
        ret

This is useful for things like int/float/double arrays, as the indexing can be folded into
the loads&stores, reducing register pressure and decreasing the pressure on the decode unit.
With these changes, I expect our performance on 256.bzip2 and gzip to improve a lot.  On
bzip2 for example, we go from this:

10665 asm-printer           - Number of machine instrs printed
   40 ra-local              - Number of loads/stores folded into instructions
 1708 ra-local              - Number of loads added
 1532 ra-local              - Number of stores added
 1354 twoaddressinstruction - Number of instructions added
 1354 twoaddressinstruction - Number of two-address instructions
 2794 x86-peephole          - Number of peephole optimization performed

to this:
9873 asm-printer           - Number of machine instrs printed
  41 ra-local              - Number of loads/stores folded into instructions
1710 ra-local              - Number of loads added
1521 ra-local              - Number of stores added
 789 twoaddressinstruction - Number of instructions added
 789 twoaddressinstruction - Number of two-address instructions
2142 x86-peephole          - Number of peephole optimization performed

... and these types of instructions are often in tight loops.

Linear scan is also helped, but not as much.  It goes from:

8787 asm-printer           - Number of machine instrs printed
2389 liveintervals         - Number of identity moves eliminated after coalescing
2288 liveintervals         - Number of interval joins performed
3522 liveintervals         - Number of intervals after coalescing
5810 liveintervals         - Number of original intervals
 700 spiller               - Number of loads added
 487 spiller               - Number of stores added
 303 spiller               - Number of register spills
1354 twoaddressinstruction - Number of instructions added
1354 twoaddressinstruction - Number of two-address instructions
 363 x86-peephole          - Number of peephole optimization performed

to:

7982 asm-printer           - Number of machine instrs printed
1759 liveintervals         - Number of identity moves eliminated after coalescing
1658 liveintervals         - Number of interval joins performed
3282 liveintervals         - Number of intervals after coalescing
4940 liveintervals         - Number of original intervals
 635 spiller               - Number of loads added
 452 spiller               - Number of stores added
 288 spiller               - Number of register spills
 789 twoaddressinstruction - Number of instructions added
 789 twoaddressinstruction - Number of two-address instructions
 258 x86-peephole          - Number of peephole optimization performed

Though I'm not complaining about the drop in the number of intervals.  :)

llvm-svn: 11820
parent d1ee55d4
Loading
Loading
Loading
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment