- Feb 24, 2003
-
-
Chris Lattner authored
llvm-svn: 5620
-
Chris Lattner authored
a union-find based algorithm, is significantly faster, and is more general. It will also scale to handle call instructions correctly, which is a nice added bonus. This includes a new pass -print-alias-sets which can be used to show how alias sets are formed for a particular analysis. llvm-svn: 5619
-
Chris Lattner authored
llvm-svn: 5618
-
Chris Lattner authored
llvm-svn: 5617
-
Chris Lattner authored
llvm-svn: 5616
-
Chris Lattner authored
llvm-svn: 5615
-
Chris Lattner authored
llvm-svn: 5614
-
Chris Lattner authored
llvm-svn: 5613
-
Chris Lattner authored
llvm-svn: 5612
-
Chris Lattner authored
llvm-svn: 5611
-
- Feb 23, 2003
-
-
Chris Lattner authored
a pass which wraps the function. This allows other passes to use the functionality llvm-svn: 5610
-
Chris Lattner authored
llvm-svn: 5609
-
- Feb 22, 2003
-
-
Chris Lattner authored
llvm-svn: 5608
-
Chris Lattner authored
llvm-svn: 5607
-
Chris Lattner authored
was not correctly computed. llvm-svn: 5606
-
- Feb 20, 2003
-
-
Chris Lattner authored
llvm-svn: 5605
-
Chris Lattner authored
llvm-svn: 5604
-
Chris Lattner authored
llvm-svn: 5603
-
Chris Lattner authored
llvm-svn: 5602
-
Chris Lattner authored
llvm-svn: 5601
-
- Feb 19, 2003
-
-
Chris Lattner authored
llvm-svn: 5600
-
- Feb 18, 2003
-
-
Chris Lattner authored
llvm-svn: 5599
-
Chris Lattner authored
llvm-svn: 5598
-
Chris Lattner authored
* X*C + X --> X * (C+1) * X + X*C --> X * (C+1) * X - X*C --> X * (1-C) * X*C - X --> X * (C-1) llvm-svn: 5592
-
Chris Lattner authored
llvm-svn: 5591
-
Chris Lattner authored
llvm-svn: 5590
-
Chris Lattner authored
llvm-svn: 5589
-
Chris Lattner authored
* A & ~A == 0 * A / (2^c) == A >> c if unsigned * 0 / A == 0 * 1.0 * A == A * A * (2^c) == A << c * A ^ ~A == -1 * A | ~A == -1 * 0 % X = 0 * A % (2^c) == A & (c-1) if unsigned * A - (A & B) == A & ~B * -1 - A == ~A llvm-svn: 5588
-
Chris Lattner authored
* A & ~A == 0 * A / (2^c) == A >> c if unsigned * 0 / A == 0 * 1.0 * A == A * A * (2^c) == A << c * A ^ ~A == -1 * A | ~A == -1 * 0 % X = 0 * A % (2^c) == A & (c-1) if unsigned * A - (A & B) == A & ~B * -1 - A == ~A llvm-svn: 5587
-
Chris Lattner authored
llvm-svn: 5586
-
Chris Lattner authored
llvm-svn: 5585
-
- Feb 15, 2003
-
-
Chris Lattner authored
llvm-svn: 5576
-
- Feb 14, 2003
-
-
Anand Shukla authored
llvm-svn: 5572
-
Chris Lattner authored
llvm-svn: 5571
-
Chris Lattner authored
llvm-svn: 5567
-
Chris Lattner authored
This helps a lot of testcases, for example: New Time New #Nodes Old Time Old #Nodes 254.gap: 91.1024 21605 91.1397 22657 povray31: 2.7807 8613 3.0152 10338 255.vortex: 1.2034 8153 1.2172 8822 moria: .6756 3150 .7054 3877 300.twolf: .1652 2010 .1851 3270 Typically, testcases which use long and ulong integers a lot get better, f.e. povray above. llvm-svn: 5566
-
Chris Lattner authored
llvm-svn: 5565
-
Chris Lattner authored
This speeds stuff up by 10% on some tests, woot! llvm-svn: 5564
-
Chris Lattner authored
llvm-svn: 5563
-
Chris Lattner authored
llvm-svn: 5562
-