- Feb 06, 2014
-
-
Paul Robinson authored
Ideally only those transform passes that run at -O0 remain enabled, in reality we get as close as we reasonably can. Passes are responsible for disabling themselves, it's not the job of the pass manager to do it for them. llvm-svn: 200892
-
- Feb 04, 2014
-
-
Duncan P. N. Exon Smith authored
No functional change. Updated loops from: for (I = scc_begin(), E = scc_end(); I != E; ++I) to: for (I = scc_begin(); !I.isAtEnd(); ++I) for teh win. llvm-svn: 200789
-
Nick Lewycky authored
Self-memcpy-elision and memcpy of constant byte to memset transforms don't care how many bytes you were trying to transfer. Sink that safety test after those transforms. Noticed by inspection. llvm-svn: 200726
-
- Feb 01, 2014
-
-
Chandler Carruth authored
LCSSA when we promote to SSA registers inside of LICM. Currently, this is actually necessary. The promotion logic in LICM uses SSAUpdater which doesn't understand how to place LCSSA PHI nodes. Teaching it to do so would be a very significant undertaking. It may be worthwhile and I've left a FIXME about this in the code as well as starting a thread on llvmdev to try to figure out the right long-term solution. For now, the PR needs to be fixed. Short of using the promition SSAUpdater to place both the LCSSA PHI nodes and the promoted PHI nodes, I don't see a cleaner or cheaper way of achieving this. Fortunately, LCSSA is relatively lazy and sparse -- it should only update instructions which need it. We can also skip the recursive variant when we don't promote to SSA values. llvm-svn: 200612
-
- Jan 29, 2014
-
-
Chandler Carruth authored
preserve loop simplify of enclosing loops. The problem here starts with LoopRotation which ends up cloning code out of the latch into the new preheader it is buidling. This can create a new edge from the preheader into the exit block of the loop which breaks LoopSimplify form. The code tries to fix this by splitting the critical edge between the latch and the exit block to get a new exit block that only the latch dominates. This sadly isn't sufficient. The exit block may be an exit block for multiple nested loops. When we clone an edge from the latch of the inner loop to the new preheader being built in the outer loop, we create an exiting edge from the outer loop to this exit block. Despite breaking the LoopSimplify form for the inner loop, this is fine for the outer loop. However, when we split the edge from the inner loop to the exit block, we create a new block which is in neither the inner nor outer loop as the new exit block. This is a predecessor to the old exit block, and so the split itself takes the outer loop out of LoopSimplify form. We need to split every edge entering the exit block from inside a loop nested more deeply than the exit block in order to preserve all of the loop simplify constraints. Once we try to do that, a problem with splitting critical edges surfaces. Previously, we tried a very brute force to update LoopSimplify form by re-computing it for all exit blocks. We don't need to do this, and doing this much will sometimes but not always overlap with the LoopRotate bug fix. Instead, the code needs to specifically handle the cases which can start to violate LoopSimplify -- they aren't that common. We need to see if the destination of the split edge was a loop exit block in simplified form for the loop of the source of the edge. For this to be true, all the predecessors need to be in the exact same loop as the source of the edge being split. If the dest block was originally in this form, we have to split all of the deges back into this loop to recover it. The old mechanism of doing this was conservatively correct because at least *one* of the exiting blocks it rewrote was the DestBB and so the DestBB's predecessors were fixed. But this is a much more targeted way of doing it. Making it targeted is important, because ballooning the set of edges touched prevents LoopRotate from being able to split edges *it* needs to split to preserve loop simplify in a coherent way -- the critical edge splitting would sometimes find the other edges in need of splitting but not others. Many, *many* thanks for help from Nick reducing these test cases mightily. And helping lots with the analysis here as this one was quite tricky to track down. llvm-svn: 200393
-
Chandler Carruth authored
because of the inside-out run of LoopSimplify in the LoopPassManager and the fact that LoopSimplify couldn't be "preserved" across two independent LoopPassManagers. Anyways, in that case, IndVars wasn't correctly preserving an LCSSA PHI node because it thought it was rewriting (via SCEV) the incoming value to a loop invariant value. While it may well be invariant for the current loop, it may be rewritten in terms of an enclosing loop's values. This in and of itself is fine, as the LCSSA PHI node in the enclosing loop for the inner loop value we're rewriting will have its own LCSSA PHI node if used outside of the enclosing loop. With me so far? Well, the current loop and the enclosing loop may share an exiting block and exit block, and when they do they also share LCSSA PHI nodes. In this case, its not valid to RAUW through the LCSSA PHI node. Expected crazy test included. llvm-svn: 200372
-
- Jan 28, 2014
-
-
Reid Kleckner authored
Summary: I searched Transforms/ and Analysis/ for 'ByVal' and updated those call sites to check for inalloca if appropriate. I added tests for any change that would allow an optimization to fire on inalloca. Reviewers: nlewycky Differential Revision: http://llvm-reviews.chandlerc.com/D2449 llvm-svn: 200281
-
- Jan 27, 2014
-
-
Benjamin Kramer authored
Insert before the terminating instruction of the dominating block instead. llvm-svn: 200218
-
- Jan 25, 2014
-
-
Chandler Carruth authored
the loops in a function, and teach LICM to work in the presance of LCSSA. Previously, LCSSA was a loop pass. That made passes requiring it also be loop passes and unable to depend on function analysis passes easily. It also caused outer loops to have a different "canonical" form from inner loops during analysis. Instead, we go into LCSSA form and preserve it through the loop pass manager run. Note that this has the same problem as LoopSimplify that prevents enabling its verification -- loop passes which run at the end of the loop pass manager and don't preserve these are valid, but the subsequent loop pass runs of outer loops that do preserve this pass trigger too much verification and fail because the inner loop no longer verifies. The other problem this exposed is that LICM was completely unable to handle LCSSA form. It didn't preserve it and it actually would give up on moving instructions in many cases when they were used by an LCSSA phi node. I've taught LICM to support detecting LCSSA-form PHI nodes and to hoist and sink around them. This may actually let LICM fire significantly more because we put everything into LCSSA form to rotate the loop before running LICM. =/ Now LICM should handle that fine and preserve it correctly. The down side is that LICM has to require LCSSA in order to preserve it. This is just a fact of life for LCSSA. It's entirely possible we should completely remove LCSSA from the optimizer. The test updates are essentially accomodating LCSSA phi nodes in the output of LICM, and the fact that we now completely sink every instruction in ashr-crash below the loop bodies prior to unrolling. With this change, LCSSA is computed only three times in the pass pipeline. One of them could be removed (and potentially a SCEV run and a separate LoopPassManager entirely!) if we had a LoopPass variant of InstCombine that ran InstCombine on the loop body but refused to combine away LCSSA PHI nodes. Currently, this also prevents loop unrolling from being in the same loop pass manager is rotate, LICM, and unswitch. There is one thing that I *really* don't like -- preserving LCSSA in LICM is quite expensive. We end up having to re-run LCSSA twice for some loops after LICM runs because LICM can undo LCSSA both in the current loop and the parent loop. I don't really see good solutions to this other than to completely move away from LCSSA and using tools like SSAUpdater instead. llvm-svn: 200067
-
Juergen Ributzka authored
This reverts commit r200058 and adds the using directive for ARMTargetTransformInfo to silence two g++ overload warnings. llvm-svn: 200062
-
Hans Wennborg authored
This commit caused -Woverloaded-virtual warnings. The two new TargetTransformInfo::getIntImmCost functions were only added to the superclass, and to the X86 subclass. The other targets were not updated, and the warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was hiding the two new getIntImmCost variants. We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost" to the various subclasses, or turning it off, but I suspect that it's wrong to leave the functions unimplemnted in those targets. The default implementations return TCC_Free, which I don't think is right e.g. for ARM. llvm-svn: 200058
-
- Jan 24, 2014
-
-
Juergen Ributzka authored
Retry commit r200022 with a fix for the build bot errors. Constant expressions have (unlike instructions) module scope use lists and therefore may have users in different functions. The fix is to simply ignore these out-of-function uses. llvm-svn: 200034
-
Juergen Ributzka authored
This reverts commit r200022 to unbreak the build bots. llvm-svn: 200024
-
Juergen Ributzka authored
This pass identifies expensive constants to hoist and coalesces them to better prepare it for SelectionDAG-based code generation. This works around the limitations of the basic-block-at-a-time approach. First it scans all instructions for integer constants and calculates its cost. If the constant can be folded into the instruction (the cost is TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't consider it expensive and leave it alone. This is the default behavior and the default implementation of getIntImmCost will always return TCC_Free. If the cost is more than TCC_BASIC, then the integer constant can't be folded into the instruction and it might be beneficial to hoist the constant. Similar constants are coalesced to reduce register pressure and materialization code. When a constant is hoisted, it is also hidden behind a bitcast to force it to be live-out of the basic block. Otherwise the constant would be just duplicated and each basic block would have its own copy in the SelectionDAG. The SelectionDAG recognizes such constants as opaque and doesn't perform certain transformations on them, which would create a new expensive constant. This optimization is only applied to integer constants in instructions and simple (this means not nested) constant cast experessions. For example: %0 = load i64* inttoptr (i64 big_constant to i64*) Reviewed by Eric llvm-svn: 200022
-
Alp Toker authored
Sweep the codebase for common typos. Includes some changes to visible function names that were misspelt. llvm-svn: 200018
-
Chandler Carruth authored
We completely skipped promotion in LICM if the loop has a preheader or dedicated exits, but not *both*. We hoist if there is a preheader, and sink if there are dedicated exits, but either hoisting or sinking can move loop invariant code out of the loop! I have no idea if this has a practical consequence. If anyone has ideas for a test case, let me know. llvm-svn: 199966
-
Chandler Carruth authored
literal that bakes a pass name and forces parsing it in the pass manager. llvm-svn: 199963
-
- Jan 23, 2014
-
-
Chandler Carruth authored
function and a FunctionPass. This has many benefits. The motivating use case was to be able to compute function analysis passes *after* running LoopSimplify (to avoid invalidating them) and then to run other passes which require LoopSimplify. Specifically passes like unrolling and vectorization are critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so that they can be profile aware. For the LoopVectorize pass the only things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify and LCSSA is next on my list. There are also a bunch of other benefits of doing this: - It is now very feasible to make more passes *preserve* LoopSimplify because they can simply run it after changing a loop. Because subsequence passes can assume LoopSimplify is preserved we can reduce the runs of this pass to the times when we actually mutate a loop structure. - The new pass manager should be able to more easily support loop passes factored in this way. - We can at long, long last observe that LoopSimplify is preserved across SCEV. This *halves* the number of times we run LoopSimplify!!! Now, getting here wasn't trivial. First off, the interfaces used by LoopSimplify are all over the map regarding how analysis are updated. We end up with weird "pass" parameters as a consequence. I'll try to clean at least some of this up later -- I'll have to have it all clean for the new pass manager. Next up I discovered a really frustrating bug. LoopUnroll *claims* to preserve LoopSimplify. That's actually a lie. But the way the LoopPassManager ends up running the passes, it always ran LoopSimplify on the unrolled-into loop, rectifying this oversight before any verification could kick in and point out that in fact nothing was preserved. So I've added code to the unroller to *actually* simplify the surrounding loop when it succeeds at unrolling. The only functional change in the test suite is that we now catch a case that was previously missed because SCEV and other loop transforms see their containing loops as simplified and thus don't miss some opportunities. One test case has been converted to check that we catch this case rather than checking that we miss it but at least don't get the wrong answer. Note that I have #if-ed out all of the verification logic in LoopSimplify! This is a temporary workaround while extracting these bits from the LoopPassManager. Currently, there is no way to have a pass in the LoopPassManager which preserves LoopSimplify along with one which does not. The LPM will try to verify on each loop in the nest that LoopSimplify holds but the now-Function-pass cannot distinguish what loop is being verified and so must try to verify all of them. The inner most loop is clearly no longer simplified as there is a pass which didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe LoopVectorize and some other fixes) I'll be able to re-enable this check and catch any places where we are still failing to preserve LoopSimplify. If this causes problems I can back this out and try to commit *all* of this at once, but so far this seems to work and allow much more incremental progress. llvm-svn: 199884
-
- Jan 22, 2014
-
-
Matt Arsenault authored
llvm-svn: 199836
-
Tim Northover authored
llvm-svn: 199801
-
Chandler Carruth authored
inconsistent results for different orderings of alloca slices. The fundamental issue is that it is just always a mistake to return early from this function. There is no effective early exit to leverage. This patch stops trynig to do so and simplifies the code a bit as a consequence. Original diagnosis and patch by James Molloy with some name tweaks by me in part reflecting feedback from Duncan Smith on the mailing list. llvm-svn: 199771
-
- Jan 19, 2014
-
-
Chandler Carruth authored
intrinsics. Reported on the list by Evan with a couple of attempts to fix, but it took a while to dig down to the root cause. There are two overlapping bugs here, both centering around the circumstance of discovering a memcpy operand which is known to be completely outside the bounds of the alloca. First, we need to kill the *other* side of the memcpy if it was added to this alloca. Otherwise we'll factor it into our slicing and try to rewrite it even though we know for a fact that it is dead. This is made more tricky because we can visit the sides in either order. So we have to both kill the other side and skip instructions marked as dead. The latter really should be goodness in every case, but here is a matter of correctness. Second, we need to actually remove the *uses* of the alloca by the memcpy when queuing it for later deletion. Otherwise it may still be using the alloca when we go to promote it (if the rewrite re-uses the existing alloca instruction). Do this by factoring out the use-clobbering used when for nixing a Phi argument and re-using it across the operands of a to-be-deleted instruction. llvm-svn: 199590
-
- Jan 16, 2014
-
-
Quentin Colombet authored
When registering a pass, a pass can now specify a second construct that takes as argument a pointer to TargetMachine. The PassInfo class has been updated to reflect that possibility. If such a constructor exists opt will use it instead of the default constructor when instantiating the pass. Since such IR passes are supposed to be rare, no specific support has been added to this commit to allow an easy registration of such a pass. In other words, for such pass, the initialization function has to be hand-written (see CodeGenPrepare for instance). Now, codegenprepare can be tested using opt: opt -codegenprepare -mtriple=mytriple input.ll llvm-svn: 199430
-
- Jan 13, 2014
-
-
Chandler Carruth authored
can be used by both the new pass manager and the old. This removes it from any of the virtual mess of the pass interfaces and lets it derive cleanly from the DominatorTreeBase<> template. In turn, tons of boilerplate interface can be nuked and it turns into a very straightforward extension of the base DominatorTree interface. The old analysis pass is now a simple wrapper. The names and style of this split should match the split between CallGraph and CallGraphWrapperPass. All of the users of DominatorTree have been updated to match using many of the same tricks as with CallGraph. The goal is that the common type remains the resulting DominatorTree rather than the pass. This will make subsequent work toward the new pass manager significantly easier. Also in numerous places things became cleaner because I switched from re-running the pass (!!! mid way through some other passes run!!!) to directly recomputing the domtree. llvm-svn: 199104
-
Chandler Carruth authored
trees into the Support library. These are all expressed in terms of the generic GraphTraits and CFG, with no reliance on any concrete IR types. Putting them in support clarifies that and makes the fact that the static analyzer in Clang uses them much more sane. When moving the Dominators.h file into the IR library I claimed that this was the right home for it but not something I planned to work on. Oops. So why am I doing this? It happens to be one step toward breaking the requirement that IR verification can only be performed from inside of a pass context, which completely blocks the implementation of verification for the new pass manager infrastructure. Fixing it will also allow removing the concept of the "preverify" step (WTF???) and allow the verifier to cleanly flag functions which fail verification in a way that precludes even computing dominance information. Currently, that results in a fatal error even when you ask the verifier to not fatally error. It's awesome like that. The yak shaving will continue... llvm-svn: 199095
-
Chandler Carruth authored
directory. These passes are already defined in the IR library, and it doesn't make any sense to have the headers in Analysis. Long term, I think there is going to be a much better way to divide these matters. The dominators code should be fully separated into the abstract graph algorithm and have that put in Support where it becomes obvious that evn Clang's CFGBlock's can use it. Then the verifier can manually construct dominance information from the Support-driven interface while the Analysis library can provide a pass which both caches, reconstructs, and supports a nice update API. But those are very long term, and so I don't want to leave the really confusing structure until that day arrives. llvm-svn: 199082
-
Chandler Carruth authored
llvm-svn: 199080
-
- Jan 11, 2014
-
-
Diego Novillo authored
1- Use the line_iterator class to read profile files. 2- Allow comments in profile file. Lines starting with '#' are completely ignored while reading the profile. 3- Add parsing support for discriminators and indirect call samples. Our external profiler can emit more profile information that we are currently not handling. This patch does not add new functionality to support this information, but it allows profile files to provide it. I will add actual support later on (for at least one of these features, I need support for DWARF discriminators in Clang). A sample line may contain the following additional information: Discriminator. This is used if the sampled program was compiled with DWARF discriminator support (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). This is currently only emitted by GCC and we just ignore it. Potential call targets and samples. If present, this line contains a call instruction. This models both direct and indirect calls. Each called target is listed together with the number of samples. For example, 130: 7 foo:3 bar:2 baz:7 The above means that at relative line offset 130 there is a call instruction that calls one of foo(), bar() and baz(). With baz() being the relatively more frequent call target. Differential Revision: http://llvm-reviews.chandlerc.com/D2355 4- Simplify format of profile input file. This implements earlier suggestions to simplify the format of the sample profile file. The symbol table is not necessary and function profiles do not need to know the number of samples in advance. Differential Revision: http://llvm-reviews.chandlerc.com/D2419 llvm-svn: 198973
-
Diego Novillo authored
This adds a propagation heuristic to convert instruction samples into branch weights. It implements a similar heuristic to the one implemented by Dehao Chen on GCC. The propagation proceeds in 3 phases: 1- Assignment of block weights. All the basic blocks in the function are initial assigned the same weight as their most frequently executed instruction. 2- Creation of equivalence classes. Since samples may be missing from blocks, we can fill in the gaps by setting the weights of all the blocks in the same equivalence class to the same weight. To compute the concept of equivalence, we use dominance and loop information. Two blocks B1 and B2 are in the same equivalence class if B1 dominates B2, B2 post-dominates B1 and both are in the same loop. 3- Propagation of block weights into edges. This uses a simple propagation heuristic. The following rules are applied to every block B in the CFG: - If B has a single predecessor/successor, then the weight of that edge is the weight of the block. - If all the edges are known except one, and the weight of the block is already known, the weight of the unknown edge will be the weight of the block minus the sum of all the known edges. If the sum of all the known edges is larger than B's weight, we set the unknown edge weight to zero. - If there is a self-referential edge, and the weight of the block is known, the weight for that edge is set to the weight of the block minus the weight of the other incoming edges to that block (if known). Since this propagation is not guaranteed to finalize for every CFG, we only allow it to proceed for a limited number of iterations (controlled by -sample-profile-max-propagate-iterations). It currently uses the same GCC default of 100. Before propagation starts, the pass builds (for each block) a list of unique predecessors and successors. This is necessary to handle identical edges in multiway branches. Since we visit all blocks and all edges of the CFG, it is cleaner to build these lists once at the start of the pass. Finally, the patch fixes the computation of relative line locations. The profiler emits lines relative to the function header. To discover it, we traverse the compilation unit looking for the subprogram corresponding to the function. The line number of that subprogram is the line where the function begins. That becomes line zero for all the relative locations. llvm-svn: 198972
-
- Jan 09, 2014
-
-
Chandler Carruth authored
operand into the Value interface just like the core print method is. That gives a more conistent organization to the IR printing interfaces -- they are all attached to the IR objects themselves. Also, update all the users. This removes the 'Writer.h' header which contained only a single function declaration. llvm-svn: 198836
-
- Jan 07, 2014
-
-
Chandler Carruth authored
are part of the core IR library in order to support dumping and other basic functionality. Rename the 'Assembly' include directory to 'AsmParser' to match the library name and the only functionality left their -- printing has been in the core IR library for quite some time. Update all of the #includes to match. All of this started because I wanted to have the layering in good shape before I started adding support for printing LLVM IR using the new pass infrastructure, and commandline support for the new pass infrastructure. llvm-svn: 198688
-
Chandler Carruth authored
subsequent changes are easier to review. About to fix some layering issues, and wanted to separate out the necessary churn. Also comment and sink the include of "Windows.h" in three .inc files to match the usage in Memory.inc. llvm-svn: 198685
-
Andrew Trick authored
This doesn't seem to have actually broken anything. It was paranoia on my part. Trying again now that bots are more stable. This is a follow up of the r198338 commit that added truncates for lcssa phi nodes. Sinking the truncates below the phis cleans up the loop and simplifies subsequent analysis within the indvars pass. llvm-svn: 198678
-
Andrew Trick authored
This reverts commit r198654. One of the bots reported a SciMark failure. llvm-svn: 198659
-
Andrew Trick authored
This is a follow up of the r198338 commit that added truncates for lcssa phi nodes. Sinking the truncates below the phis cleans up the loop and simplifies subsequent analysis within the indvars pass. llvm-svn: 198654
-
Andrew Trick authored
llvm-svn: 198653
-
- Jan 04, 2014
-
-
Alp Toker authored
All other uses of this macro in LLVM/clang have been moved to the function definition so follow suite (and the usage advice) here too for consistency. llvm-svn: 198516
-
- Jan 03, 2014
-
-
Nico Weber authored
The motivation is to mark dump methods as used in debug builds so that they can be called from lldb, but to not do so in release builds so that they can be dead-stripped. There's lots of potential follow-up work suggested in the thread "Should dump methods be LLVM_ATTRIBUTE_USED only in debug builds?" on cfe-dev, but everyone seems to agreen on this subset. Macro name chosen by fair coin toss. llvm-svn: 198456
-
David Peixotto authored
The loop rerolling pass was failing with an assertion failure from a failed cast on loops like this: void foo(int *A, int *B, int m, int n) { for (int i = m; i < n; i+=4) { A[i+0] = B[i+0] * 4; A[i+1] = B[i+1] * 4; A[i+2] = B[i+2] * 4; A[i+3] = B[i+3] * 4; } } The code was casting the SCEV-expanded code for the new induction variable to a phi-node. When the loop had a non-constant lower bound, the SCEV expander would end the code expansion with an add insted of a phi node and the cast would fail. It looks like the cast to a phi node was only needed to get the induction variable value coming from the backedge to compute the end of loop condition. This patch changes the loop reroller to compare the induction variable to the number of times the backedge is taken instead of the iteration count of the loop. In other words, we stop the loop when the current value of the induction variable == IterationCount-1. Previously, the comparison was comparing the induction variable value from the next iteration == IterationCount. This problem only seems to occur on 32-bit targets. For some reason, the loop is not rerolled on 64-bit targets. PR18290 llvm-svn: 198425
-
- Jan 02, 2014
-
-
Hal Finkel authored
As noted in the comment above CodeGenPrepare::OptimizeInst, which aggressively sinks compares to reduce pressure on the condition register(s), for targets such as PowerPC with multiple condition registers, this may not be the right thing to do. This adds an HasMultipleConditionRegisters boolean to TLI, and CodeGenPrepare::OptimizeInst is skipped when HasMultipleConditionRegisters is true. This functionality will be used by the PowerPC backend in an upcoming commit. Especially when the PowerPC backend starts tracking individual condition register bits as separate allocatable entities (which will happen in this upcoming commit), this sinking from CodeGenPrepare::OptimizeInst is significantly suboptimial. llvm-svn: 198354
-