A compound literal within a global lambda or block is still within
the body of a function for the purposes of computing its storage duration and deciding whether its initializer must be constant. There are a number of problems in our current treatment of compound literals. C specifies that a compound literal yields an l-value referring to an object with either static or automatic storage duration, depending on where it was written; in the latter case, the literal object has a lifetime tied to the enclosing scope (much like an ObjC block), not the enclosing full-expression. To get these semantics fully correct in our current design, we would need to collect compound literals on the ExprWithCleanups, just like we do with ObjC blocks; we would probably also want to identify literals like we do with materialized temporaries. But it gets stranger; GCC adds compound literals to C++ as an extension, but makes them r-values, which are generally assumed to have temporary storage duration. Ignoring destructor ordering, the difference only matters if the object's address escapes the full-expression, which for an r-value can only happen with reference binding (which extends temporaries) or array-to-pointer decay (which does not). GCC then attempts to lock down on array-to-pointer decay in ad hoc ways. Arguably a far superior language solution for C++ (and perhaps even array r-values in C, which can occur in other ways) would be to propagate lifetime extension through array-to-pointer decay, so that initializing a pointer object to a decayed r-value array extends the lifetime of the complete object containing the array. But this would be a major change in semantics which arguably ought to be blessed by the committee(s). Anyway, I'm not fixing any of that in this patch; I did try, but it got out of hand. Fixes rdar://28949016. llvm-svn: 285643
Loading
Please register or sign in to comment