- Aug 30, 2019
-
-
Puyan Lotfi authored
This tool merges interface stub files to produce a merged interface stub file or a stub library. Currently it for stub library generation it can produce an ELF .so stub file, or a TBD file (experimental). It will be used by the clang -emit-interface-stubs compilation pipeline to merge and assemble the per-CU stub files into a stub library. The new IFS format is as follows: --- !experimental-ifs-v1 IfsVersion: 1.0 Triple: <llvm triple> ObjectFileFormat: <ELF | TBD> Symbols: _ZSymbolName: { Type: <type>, etc... } ... Differential Revision: https://reviews.llvm.org/D66405 llvm-svn: 370499
-
Simon Pilgrim authored
SDLoc(N0) and SDLoc(cast<LoadSDNode>(N0)) should be equivalent. llvm-svn: 370498
-
Simon Pilgrim authored
[TargetLowering] SimplifyDemandedBits ADD/SUB/MUL - correctly inherit SDNodeFlags from the original node. Just disable NSW/NUW flags. This matches what we're already doing for the other situations for these nodes, it was just missed for the demanded constant case. Noticed by inspection - confirmed in offline discussion with @spatel. I've checked we have test coverage in the x86 extract-bits.ll and extract-lowbits.ll tests llvm-svn: 370497
-
Matt Arsenault authored
llvm-svn: 370496
-
Craig Topper authored
gcc and icc pass these types in zmm registers in zmm registers. This patch implements a quick hack to override the register type before calling convention handling to one that is legal. Longer term we might want to do something similar to 256-bit integer registers on AVX1 where we just split all the operations. Fixes PR42957 Differential Revision: https://reviews.llvm.org/D66708 llvm-svn: 370495
-
Craig Topper authored
Missed these when I hadded the enum entries llvm-svn: 370494
-
Nico Weber authored
llvm-svn: 370492
-
Evgeniy Stepanov authored
Summary: MTE allows memory access to bypass tag check iff the address argument is [SP, #imm]. This change takes advantage of this to demote uses of tagged addresses to regular FrameIndex operands, reducing register pressure in large functions. MO_TAGGED target flag is used to signal that the FrameIndex operand refers to memory that might be tagged, and needs to be handled with care. Such operand must be lowered to [SP, #imm] directly, without a scratch register. The transformation pass attempts to predict when the offset will be out of range and disable the optimization. AArch64RegisterInfo::eliminateFrameIndex has an escape hatch in case this prediction has been wrong, but it is quite inefficient and should be avoided. Reviewers: pcc, vitalybuka, ostannard Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66457 llvm-svn: 370490
-
Simon Pilgrim authored
llvm-svn: 370489
-
Whitney Tsang authored
getLoadStorePointerOperand(). Reviewer: hsaito, sebpop, reames, hfinkel, mkuper, bogner, haicheng, arsenm, lattner, chandlerc, grosser, rengolin Reviewed By: reames Subscribers: wdng, llvm-commits, bmahjour Tag: LLVM Differential Revision: https://reviews.llvm.org/D66595 llvm-svn: 370486
-
Johannes Doerfert authored
llvm-svn: 370485
-
Craig Topper authored
I'm looking at unfolding broadcast loads on AVX512 which will require refactoring this code to select broadcast opcodes instead of regular load/stores in some cases. Merging them to avoid further complicating their interfaces. llvm-svn: 370484
-
Johannes Doerfert authored
Summary: Instead of recomputing information for call sites we now use the function information directly. This is always valid and once we have call site specific information we can improve here. This patch also bootstraps attributes that are created on-demand through an initial update call. Information that is known will then directly be available in the new attribute without causing an iteration delay. The tests show how this improves the iteration count. Reviewers: sstefan1, uenoku Subscribers: hiraditya, bollu, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66781 llvm-svn: 370480
-
Johannes Doerfert authored
Summary: Any pointer could have load/store users not only floating ones so we move the manifest logic for alignment into the AAAlignImpl class. Reviewers: uenoku, sstefan1 Subscribers: hiraditya, bollu, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66922 llvm-svn: 370479
-
Simon Pilgrim authored
llvm-svn: 370478
-
Piotr Sobczak authored
Summary: Add missing tbuffer loads intrinsics in SimplifyDemandedVectorElts. Reviewers: arsenm, nhaehnle Reviewed By: arsenm Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66926 llvm-svn: 370475
-
Sid Manning authored
Differential Revision: https://reviews.llvm.org/D66976 llvm-svn: 370474
-
George Rimar authored
Currenly we can encode the 'st_other' field of symbol using 3 fields. 'Visibility' is used to encode STV_* values. 'Other' is used to encode everything except the visibility, but it can't handle arbitrary values. 'StOther' is used to encode arbitrary values when 'Visibility'/'Other' are not helpfull enough. 'st_other' field is used to encode symbol visibility and platform-dependent flags and values. Problem to encode it is that it consists of Visibility part (STV_* values) which are enumeration values and the Other part, which is different and inconsistent. For MIPS the Other part contains flags for all STO_MIPS_* values except STO_MIPS_MIPS16. (Like comment in ELFDumper says: "Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 flag overlapped with other ST_MIPS_xxx flags."...) And for PPC64 the Other part might actually encode any value. This patch implements custom logic for handling the st_other and removes 'Visibility' and 'StOther' fields. Here is an example of a new YAML style this patch allows: - Name: foo Other: [ 0x4 ] - Name: bar Other: [ STV_PROTECTED, 4 ] - Name: zed Other: [ STV_PROTECTED, STO_MIPS_OPTIONAL, 0xf8 ] Differential revision: https://reviews.llvm.org/D66886 llvm-svn: 370472
-
Simon Pilgrim authored
llvm-svn: 370471
-
Simon Pilgrim authored
This is hidden behind a (scalar-only) isOneConstant(N1) check at the moment, but once we get around to adding vector support we need to ensure we're dealing with the scalar bitwidth, not the total. llvm-svn: 370468
-
Simon Atanasyan authored
llvm-svn: 370467
-
Luis Marques authored
llvm-svn: 370466
-
Haojian Wu authored
llvm-svn: 370465
-
Amaury Sechet authored
llvm-svn: 370464
-
Bjorn Pettersson authored
Summary: Found a couple of places in the code where all the PHI nodes of a MBB is updated, replacing references to one MBB by reference to another MBB instead. This patch simply refactors the code to use a common helper (MachineBasicBlock::replacePhiUsesWith) for such PHI node updates. Reviewers: t.p.northover, arsenm, uabelho Subscribers: wdng, hiraditya, jsji, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66750 llvm-svn: 370463
-
Simon Pilgrim authored
Return a proper zero vector, just in case some elements are undef. Noticed by inspection after dealing with a similar issue in PR43159. llvm-svn: 370460
-
Simon Pilgrim authored
llvm-svn: 370459
-
Chris Jackson authored
--add-symbol to be specified with --new-symbol-visibility llvm-svn: 370458
-
Hideto Ueno authored
Summary: This patch adds an appropriate `initialize` method for `AANoAliasCallSiteArgument`. Reviewers: jdoerfert, sstefan1 Reviewed By: jdoerfert Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66927 llvm-svn: 370456
-
Roman Lebedev authored
Summary: @mclow.lists brought up this issue up in IRC. It is a reasonably common problem to compare some two values for equality. Those may be just some integers, strings or arrays of integers. In C, there is `memcmp()`, `bcmp()` functions. In C++, there exists `std::equal()` algorithm. One can also write that function manually. libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ libc++ does not do anything like that, it simply relies on simple C++'s `operator==()`. https://godbolt.org/z/er0Zwf (GOOD!) So likely, there exists a certain performance opportunities. Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that is using `memcmp()` (in this case, compiled with modified compiler). {F8768213} ``` #include <algorithm> #include <cmath> #include <cstdint> #include <iterator> #include <limits> #include <random> #include <type_traits> #include <utility> #include <vector> #include "benchmark/benchmark.h" template <class T> bool equal(T* a, T* a_end, T* b) noexcept { for (; a != a_end; ++a, ++b) { if (*a != *b) return false; } return true; } template <typename T> std::vector<T> getVectorOfRandomNumbers(size_t count) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(), std::numeric_limits<T>::max()); std::vector<T> v; v.reserve(count); std::generate_n(std::back_inserter(v), count, [&dis, &gen]() { return dis(gen); }); assert(v.size() == count); return v; } struct Identical { template <typename T> static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) { auto Tmp = getVectorOfRandomNumbers<T>(count); return std::make_pair(Tmp, std::move(Tmp)); } }; struct InequalHalfway { template <typename T> static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) { auto V0 = getVectorOfRandomNumbers<T>(count); auto V1 = V0; V1[V1.size() / size_t(2)]++; // just change the value. return std::make_pair(std::move(V0), std::move(V1)); } }; template <class T, class Gen> void BM_bcmp(benchmark::State& state) { const size_t Length = state.range(0); const std::pair<std::vector<T>, std::vector<T>> Data = Gen::template Gen<T>(Length); const std::vector<T>& a = Data.first; const std::vector<T>& b = Data.second; assert(a.size() == Length && b.size() == a.size()); benchmark::ClobberMemory(); benchmark::DoNotOptimize(a); benchmark::DoNotOptimize(a.data()); benchmark::DoNotOptimize(b); benchmark::DoNotOptimize(b.data()); for (auto _ : state) { const bool is_equal = equal(a.data(), a.data() + a.size(), b.data()); benchmark::DoNotOptimize(is_equal); } state.SetComplexityN(Length); state.counters["eltcnt"] = benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant); state.counters["eltcnt/sec"] = benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate); const size_t BytesRead = 2 * sizeof(T) * Length; state.counters["bytes_read/iteration"] = benchmark::Counter(BytesRead, benchmark::Counter::kDefaults, benchmark::Counter::OneK::kIs1024); state.counters["bytes_read/sec"] = benchmark::Counter( BytesRead, benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024); } template <typename T> static void CustomArguments(benchmark::internal::Benchmark* b) { const size_t L2SizeBytes = []() { for (const benchmark::CPUInfo::CacheInfo& I : benchmark::CPUInfo::Get().caches) { if (I.level == 2) return I.size; } return 0; }(); // What is the largest range we can check to always fit within given L2 cache? const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 / /*maximal elt size*/ sizeof(T) / /*safety margin*/ 2; b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN); } BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical) ->Apply(CustomArguments<uint8_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical) ->Apply(CustomArguments<uint16_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical) ->Apply(CustomArguments<uint32_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical) ->Apply(CustomArguments<uint64_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway) ->Apply(CustomArguments<uint8_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway) ->Apply(CustomArguments<uint16_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway) ->Apply(CustomArguments<uint32_t>); BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway) ->Apply(CustomArguments<uint64_t>); ``` {F8768210} ``` $ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx 2019-04-25 21:17:11 Running build-old/test/llvm-bcmp-bench Run on (8 X 4000 MHz CPU s) CPU Caches: L1 Data 16K (x8) L1 Instruction 64K (x4) L2 Unified 2048K (x4) L3 Unified 8192K (x1) Load Average: 0.65, 3.90, 4.14 --------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... --------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N BM_bcmp<uint8_t, Identical>_RMS 8 % 8 % <...> BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N BM_bcmp<uint16_t, Identical>_RMS 25 % 25 % <...> BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N BM_bcmp<uint32_t, Identical>_RMS 42 % 42 % <...> BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N BM_bcmp<uint64_t, Identical>_RMS 27 % 27 % <...> BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 % <...> BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 % <...> BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 % <...> BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 % RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0 2019-04-25 21:19:29 Running build-new/test/llvm-bcmp-bench Run on (8 X 4000 MHz CPU s) CPU Caches: L1 Data 16K (x8) L1 Instruction 64K (x4) L2 Unified 2048K (x4) L3 Unified 8192K (x1) Load Average: 1.01, 2.85, 3.71 --------------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations UserCounters... --------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N BM_bcmp<uint8_t, Identical>_RMS 37 % 37 % <...> BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N BM_bcmp<uint16_t, Identical>_RMS 34 % 34 % <...> BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N BM_bcmp<uint32_t, Identical>_RMS 35 % 35 % <...> BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N BM_bcmp<uint64_t, Identical>_RMS 33 % 33 % <...> BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 % <...> BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 % <...> BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 % <...> BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 % Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench Benchmark Time CPU Time Old Time New CPU Old CPU New --------------------------------------------------------------------------------------------------------------------------------------- <...> BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590 <...> BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948 <...> BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627 <...> BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855 <...> BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569 <...> BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547 <...> BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394 <...> BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498 ``` What can we tell from the benchmark? * Performance of naive equality check somewhat improves with element size, maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s for uint64_t. I think, that instability implies performance problems. * Performance of `memcmp()`-aware benchmark always maxes out at around bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the naive variant! * eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and linearly decreases with element size. For uint64_t, it's ~4x+ the elements/second. * The call obvious is more pricey than the loop, with small element count. As it can be seen from the full output {F8768210}, the `memcmp()` is almost universally worse, independent of the element size (and thus buffer size) when element count is less than 8. So all in all, bcmp idiom does indeed pose untapped performance headroom. This diff does implement said idiom recognition. I think a reasonable test coverage is present, but do tell if there is anything obvious missing. Now, quality. This does succeed to build and pass the test-suite, at least without any non-bundled elements. {F8768216} {F8768217} This transform fires 91 times: ``` $ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json Tests: 1149 Metric: loop-idiom.NumBCmp Program result-new MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00 MultiSource/Applications/d/make_dparser 3.00 SingleSource/UnitTests/vla 2.00 MultiSource/Applications/Burg/burg 1.00 MultiSourc.../Applications/JM/lencod/lencod 1.00 MultiSource/Applications/lemon/lemon 1.00 MultiSource/Benchmarks/Bullet/bullet 1.00 MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00 MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00 MultiSourc...Prolangs-C/simulator/simulator 1.00 ``` The size changes are: I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look. ``` $ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash Tests: 1149 Same hash: 907 (filtered out) Remaining: 242 Metric: size..text Program result-old result-new diff test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6% test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5% test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1% test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1% test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1% test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1% test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0% test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0% test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0% test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0% test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan% test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan% test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan% test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan% test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan% Geomean difference nan% result-old result-new diff count 1.000000e+01 10.00000 10.000000 mean 3.152090e+05 311695.40000 0.006749 std 3.790398e+05 372091.42232 0.036605 min 7.530000e+02 833.00000 -0.034981 25% 4.243300e+04 42401.00000 -0.000866 50% 1.197370e+05 119689.00000 -0.000392 75% 6.397050e+05 639705.00000 -0.000005 max 1.001697e+06 966657.00000 0.106242 ``` I don't have timings though. And now to the code. The basic idea is to completely replace the whole loop. If we can't fully kill it, don't transform. I have left one or two comments in the code, so hopefully it can be understood. Also, there is a few TODO's that i have left for follow-ups: * widening of `memcmp()`/`bcmp()` * step smaller than the comparison size * Metadata propagation * more than two blocks as long as there is still a single backedge? * ??? Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet Reviewed By: courbet Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists Tags: #llvm Differential Revision: https://reviews.llvm.org/D61144 llvm-svn: 370454
-
Roman Lebedev authored
Summary: The internal `Builder` is private, which means there is currently no way to set the debuginfo locations for `SCEVExpander`. This only adds the wrappers, but does not use them anywhere. Reviewers: mkazantsev, sanjoy, gberry, jyknight, dneilson Reviewed By: sanjoy Subscribers: javed.absar, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D61007 llvm-svn: 370453
-
David Stenberg authored
Summary: Change LiveDebugValues so that it inserts entry values after the bundle which contains the clobbering instruction. Previously it would insert the debug value after the bundle head using insertAfter(), breaking the bundle. Reviewers: djtodoro, NikolaPrica, aprantl, vsk Reviewed By: vsk Subscribers: hiraditya, llvm-commits Tags: #debug-info, #llvm Differential Revision: https://reviews.llvm.org/D66888 llvm-svn: 370448
-
Sven van Haastregt authored
The `immarg` attribute was added in r355981. llvm-svn: 370443
-
Nico Weber authored
llvm-svn: 370442
-
Dmitri Gribenko authored
Summary: It is not used. It uses macro-based unrolling instead of variadic templates, so it is not idiomatic anymore, and therefore it is a questionable API to keep "just in case". Subscribers: mgorny, dmgreen, dexonsmith, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D66961 llvm-svn: 370441
-
Martin Storsjö authored
Extend WindowsResourceParser to support using a ResourceSectionRef for loading resources from an object file. Only allow merging resource object files in mingw mode; keep the existing error on multiple resource objects in link mode. If there only is one resource object file and no .res resources, don't parse and recreate the .rsrc section, but just link it in without inspecting it. This allows users to produce any .rsrc section (outside of what the parser supports), just like before. (I don't have a specific need for this, but it reduces the risk of this new feature.) Separate out the .rsrc section chunks in InputFiles.cpp, and only include them in the list of section chunks to link if we've determined that there only was one single resource object. (We need to keep other chunks from those object files, as they can legitimately contain other sections as well, in addition to .rsrc section chunks.) Differential Revision: https://reviews.llvm.org/D66824 llvm-svn: 370436
-
Martin Storsjö authored
Instead of updating a global variable counter for the next index of strings and data blobs, pass along a reference to actual data/string vectors and let the TreeNode insertion methods add their data/strings to the vectors when a new entry is needed. Additionally, if the resource tree had duplicates, that were ignored with -force:multipleres in lld, we no longer store all versions of the duplicated resource data, now we only keep the one that actually ends up referenced. Differential Revision: https://reviews.llvm.org/D66823 llvm-svn: 370435
-
Martin Storsjö authored
Differential Revision: https://reviews.llvm.org/D66821 llvm-svn: 370434
-
Martin Storsjö authored
This allows llvm-readobj to print the contents of each resource when printing resources from an object file or executable, like it already does for plain .res files. This requires providing the whole COFFObjectFile to ResourceSectionRef. This supports both object files and executables. For executables, the DataRVA field is used as is to look up the right section. For object files, ideally we would need to complete linking of them and fix up all relocations to know what the DataRVA field would end up being. In practice, the only thing that makes sense for an RVA field is an ADDR32NB relocation. Thus, find a relocation pointing at this field, verify that it has the expected type, locate the symbol it points at, look up the section the symbol points at, and read from the right offset in that section. This works both for GNU windres object files (which use one single .rsrc section, with all relocations against the base of the .rsrc section, with the original value of the DataRVA field being the offset of the data from the beginning of the .rsrc section) and cvtres object files (with two separate .rsrc$01 and .rsrc$02 sections, and one symbol per data entry, with the original pre-relocated DataRVA field being set to zero). Differential Revision: https://reviews.llvm.org/D66820 llvm-svn: 370433
-
Petar Avramovic authored
Add custom lowering for G_UITOFP for MIPS32. Differential Revision: https://reviews.llvm.org/D66930 llvm-svn: 370432
-