Newer
Older
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This file promotes memory references to be register references. It promotes
Chris Lattner
committed
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
// This is just the standard SSA construction algorithm to construct "pruned"
// SSA form.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Chris Lattner
committed
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/ADT/DenseMap.h"
Chris Lattner
committed
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CFG.h"
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
namespace llvm {
template<>
struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
typedef std::pair<BasicBlock*, unsigned> EltTy;
static inline EltTy getEmptyKey() {
return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
static inline EltTy getTombstoneKey() {
return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
}
static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
}
static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
return LHS == RHS;
}
static bool isPod() { return true; }
};
}
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
Chris Lattner
committed
/// This is true if there are only loads and stores to the alloca.
///
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
Anton Korobeynikov
committed
// Only allow direct and non-volatile loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
Anton Korobeynikov
committed
if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
if (LI->isVolatile())
return false;
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
Anton Korobeynikov
committed
if (SI->isVolatile())
return false;
} else if (const BitCastInst *BC = dyn_cast<BitCastInst>(*UI)) {
// A bitcast that does not feed into debug info inhibits promotion.
if (!BC->hasOneUse() || !isa<DbgInfoIntrinsic>(*BC->use_begin()))
return false;
// If the only use is by debug info, this alloca will not exist in
// non-debug code, so don't try to promote; this ensures the same
// codegen with debug info. Otherwise, debug info should not
// inhibit promotion (but we must examine other uses).
if (AI->hasOneUse())
return false;
} else {
return false;
}
return true;
}
// Data package used by RenamePass()
Nick Lewycky
committed
class RenamePassData {
typedef std::vector<Value *> ValVector;
RenamePassData() {}
RenamePassData(BasicBlock *B, BasicBlock *P,
const ValVector &V) : BB(B), Pred(P), Values(V) {}
BasicBlock *BB;
BasicBlock *Pred;
void swap(RenamePassData &RHS) {
std::swap(BB, RHS.BB);
std::swap(Pred, RHS.Pred);
Values.swap(RHS.Values);
}
/// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
/// load/store instructions in the block that directly load or store an alloca.
///
/// This functionality is important because it avoids scanning large basic
/// blocks multiple times when promoting many allocas in the same block.
Nick Lewycky
committed
class LargeBlockInfo {
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/// InstNumbers - For each instruction that we track, keep the index of the
/// instruction. The index starts out as the number of the instruction from
/// the start of the block.
DenseMap<const Instruction *, unsigned> InstNumbers;
public:
/// isInterestingInstruction - This code only looks at accesses to allocas.
static bool isInterestingInstruction(const Instruction *I) {
return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
(isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
}
/// getInstructionIndex - Get or calculate the index of the specified
/// instruction.
unsigned getInstructionIndex(const Instruction *I) {
assert(isInterestingInstruction(I) &&
"Not a load/store to/from an alloca?");
// If we already have this instruction number, return it.
DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
if (It != InstNumbers.end()) return It->second;
// Scan the whole block to get the instruction. This accumulates
// information for every interesting instruction in the block, in order to
// avoid gratuitus rescans.
const BasicBlock *BB = I->getParent();
unsigned InstNo = 0;
for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
BBI != E; ++BBI)
if (isInterestingInstruction(BBI))
InstNumbers[BBI] = InstNo++;
It = InstNumbers.find(I);
assert(It != InstNumbers.end() && "Didn't insert instruction?");
return It->second;
}
void deleteValue(const Instruction *I) {
InstNumbers.erase(I);
}
void clear() {
InstNumbers.clear();
}
};
Nick Lewycky
committed
struct PromoteMem2Reg {
/// Allocas - The alloca instructions being promoted.
///
Chris Lattner
committed
std::vector<AllocaInst*> Allocas;
DominanceFrontier &DF;
/// AST - An AliasSetTracker object to update. If null, don't update it.
///
AliasSetTracker *AST;
/// AllocaLookup - Reverse mapping of Allocas.
///
std::map<AllocaInst*, unsigned> AllocaLookup;
/// NewPhiNodes - The PhiNodes we're adding.
///
DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
/// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
/// it corresponds to.
DenseMap<PHINode*, unsigned> PhiToAllocaMap;
/// PointerAllocaValues - If we are updating an AliasSetTracker, then for
/// each alloca that is of pointer type, we keep track of what to copyValue
/// to the inserted PHI nodes here.
///
std::vector<Value*> PointerAllocaValues;
/// Visited - The set of basic blocks the renamer has already visited.
///
Chris Lattner
committed
SmallPtrSet<BasicBlock*, 16> Visited;
/// BBNumbers - Contains a stable numbering of basic blocks to avoid
/// non-determinstic behavior.
DenseMap<BasicBlock*, unsigned> BBNumbers;
/// BBNumPreds - Lazily compute the number of predecessors a block has.
DenseMap<const BasicBlock*, unsigned> BBNumPreds;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
DominanceFrontier &df, AliasSetTracker *ast,
: Allocas(A), DT(dt), DF(df), AST(ast), Context(C) {}
void run();
/// properlyDominates - Return true if I1 properly dominates I2.
///
bool properlyDominates(Instruction *I1, Instruction *I2) const {
Chris Lattner
committed
if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
I1 = II->getNormalDest()->begin();
return DT.properlyDominates(I1->getParent(), I2->getParent());
/// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
///
bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
}
private:
void RemoveFromAllocasList(unsigned &AllocaIdx) {
Allocas[AllocaIdx] = Allocas.back();
Allocas.pop_back();
--AllocaIdx;
}
unsigned getNumPreds(const BasicBlock *BB) {
unsigned &NP = BBNumPreds[BB];
if (NP == 0)
NP = std::distance(pred_begin(BB), pred_end(BB))+1;
return NP-1;
}
void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
AllocaInfo &Info);
void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
LargeBlockInfo &LBI);
void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
LargeBlockInfo &LBI);
Chris Lattner
committed
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<RenamePassData> &Worklist);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
};
struct AllocaInfo {
std::vector<BasicBlock*> DefiningBlocks;
std::vector<BasicBlock*> UsingBlocks;
StoreInst *OnlyStore;
BasicBlock *OnlyBlock;
bool OnlyUsedInOneBlock;
Value *AllocaPointerVal;
void clear() {
DefiningBlocks.clear();
UsingBlocks.clear();
OnlyStore = 0;
OnlyBlock = 0;
OnlyUsedInOneBlock = true;
AllocaPointerVal = 0;
}
/// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
/// ivars.
void AnalyzeAlloca(AllocaInst *AI) {
clear();
// As we scan the uses of the alloca instruction, keep track of stores,
// and decide whether all of the loads and stores to the alloca are within
// the same basic block.
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E;) {
Instruction *User = cast<Instruction>(*UI++);
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
// Remove any uses of this alloca in DbgInfoInstrinsics.
assert(BC->hasOneUse() && "Unexpected alloca uses!");
DbgInfoIntrinsic *DI = cast<DbgInfoIntrinsic>(*BC->use_begin());
DI->eraseFromParent();
BC->eraseFromParent();
continue;
}
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
AllocaPointerVal = SI->getOperand(0);
OnlyStore = SI;
} else {
LoadInst *LI = cast<LoadInst>(User);
// Otherwise it must be a load instruction, keep track of variable
// reads.
UsingBlocks.push_back(LI->getParent());
AllocaPointerVal = LI;
}
if (OnlyUsedInOneBlock) {
if (OnlyBlock == 0)
OnlyBlock = User->getParent();
else if (OnlyBlock != User->getParent())
OnlyUsedInOneBlock = false;
}
}
}
};
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
if (AST) PointerAllocaValues.resize(Allocas.size());
LargeBlockInfo LBI;
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
"Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
Chris Lattner
committed
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
Chris Lattner
committed
// Remove the alloca from the Allocas list, since it has been processed
RemoveFromAllocasList(AllocaNum);
++NumDeadAlloca;
Chris Lattner
committed
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
Info.AnalyzeAlloca(AI);
Chris Lattner
committed
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (Info.DefiningBlocks.size() == 1) {
RewriteSingleStoreAlloca(AI, Info, LBI);
// Finally, after the scan, check to see if the store is all that is left.
if (Info.UsingBlocks.empty()) {
// Remove the (now dead) store and alloca.
Info.OnlyStore->eraseFromParent();
LBI.deleteValue(Info.OnlyStore);
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
++NumSingleStore;
continue;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (Info.OnlyUsedInOneBlock) {
PromoteSingleBlockAlloca(AI, Info, LBI);
// Finally, after the scan, check to see if the stores are all that is
// left.
if (Info.UsingBlocks.empty()) {
// Remove the (now dead) stores and alloca.
while (!AI->use_empty()) {
StoreInst *SI = cast<StoreInst>(AI->use_back());
SI->eraseFromParent();
LBI.deleteValue(SI);
}
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
++NumLocalPromoted;
continue;
}
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
BBNumbers[I] = ID++;
}
// If we have an AST to keep updated, remember some pointer value that is
// stored into the alloca.
if (AST)
PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
// Keep the reverse mapping of the 'Allocas' array for the rename pass.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
// At this point, we're committed to promoting the alloca using IDF's, and
// the standard SSA construction algorithm. Determine which blocks need PHI
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
DetermineInsertionPoint(AI, AllocaNum, Info);
Chris Lattner
committed
if (Allocas.empty())
return; // All of the allocas must have been trivial!
LBI.clear();
Chris Lattner
committed
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
RenamePassData::ValVector Values(Allocas.size());
Chris Lattner
committed
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
Chris Lattner
committed
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
std::vector<RenamePassData> RenamePassWorkList;
RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
RenamePassData RPD;
RPD.swap(RenamePassWorkList.back());
// RenamePass may add new worklist entries.
RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
// Remove the allocas themselves from the function.
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
A->replaceAllUsesWith(UndefValue::get(A->getType()));
if (AST) AST->deleteValue(A);
A->eraseFromParent();
// Loop over all of the PHI nodes and see if there are any that we can get
// rid of because they merge all of the same incoming values. This can
// happen due to undef values coming into the PHI nodes. This process is
// iterative, because eliminating one PHI node can cause others to be removed.
bool EliminatedAPHI = true;
while (EliminatedAPHI) {
EliminatedAPHI = false;
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
if (Value *V = PN->hasConstantValue(&DT)) {
if (AST && isa<PointerType>(PN->getType()))
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
NewPhiNodes.erase(I++);
EliminatedAPHI = true;
continue;
}
}
}
// At this point, the renamer has added entries to PHI nodes for all reachable
Chris Lattner
committed
// code. Unfortunately, there may be unreachable blocks which the renamer
// hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting undef values if they are missing any incoming values.
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
// We want to do this once per basic block. As such, only process a block
// when we find the PHI that is the first entry in the block.
PHINode *SomePHI = I->second;
BasicBlock *BB = SomePHI->getParent();
if (&BB->front() != SomePHI)
continue;
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any of them.
Chris Lattner
committed
if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
continue;
Chris Lattner
committed
// Get the preds for BB.
SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in SomePHI and remove
// them from the Preds list.
for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of the Preds list for the entry we want.
SmallVector<BasicBlock*, 16>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
SomePHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block. Update all the phi
// nodes in this block that we are inserting (there could be phis before
// mem2reg runs).
unsigned NumBadPreds = SomePHI->getNumIncomingValues();
BasicBlock::iterator BBI = BB->begin();
while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
SomePHI->getNumIncomingValues() == NumBadPreds) {
Value *UndefVal = UndefValue::get(SomePHI->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
SomePHI->addIncoming(UndefVal, Preds[pred]);
NewPhiNodes.clear();
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/// ComputeLiveInBlocks - Determine which blocks the value is live in. These
/// are blocks which lead to uses. Knowing this allows us to avoid inserting
/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
/// would be dead).
void PromoteMem2Reg::
ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
// To determine liveness, we must iterate through the predecessors of blocks
// where the def is live. Blocks are added to the worklist if we need to
// check their predecessors. Start with all the using blocks.
SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
Info.UsingBlocks.begin(), Info.UsingBlocks.end());
// If any of the using blocks is also a definition block, check to see if the
// definition occurs before or after the use. If it happens before the use,
// the value isn't really live-in.
for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
BasicBlock *BB = LiveInBlockWorklist[i];
if (!DefBlocks.count(BB)) continue;
// Okay, this is a block that both uses and defines the value. If the first
// reference to the alloca is a def (store), then we know it isn't live-in.
for (BasicBlock::iterator I = BB->begin(); ; ++I) {
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (SI->getOperand(1) != AI) continue;
// We found a store to the alloca before a load. The alloca is not
// actually live-in here.
LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
LiveInBlockWorklist.pop_back();
--i, --e;
break;
if (LI->getOperand(0) != AI) continue;
// Okay, we found a load before a store to the alloca. It is actually
// live into this block.
break;
}
}
}
// Now that we have a set of blocks where the phi is live-in, recursively add
// their predecessors until we find the full region the value is live.
while (!LiveInBlockWorklist.empty()) {
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
// The block really is live in here, insert it into the set. If already in
// the set, then it has already been processed.
if (!LiveInBlocks.insert(BB))
continue;
// Since the value is live into BB, it is either defined in a predecessor or
// live into it to. Add the preds to the worklist unless they are a
// defining block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
// The value is not live into a predecessor if it defines the value.
if (DefBlocks.count(P))
continue;
// Otherwise it is, add to the worklist.
LiveInBlockWorklist.push_back(P);
}
}
}
/// DetermineInsertionPoint - At this point, we're committed to promoting the
/// alloca using IDF's, and the standard SSA construction algorithm. Determine
/// which blocks need phi nodes and see if we can optimize out some work by
/// avoiding insertion of dead phi nodes.
void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
AllocaInfo &Info) {
// Unique the set of defining blocks for efficient lookup.
SmallPtrSet<BasicBlock*, 32> DefBlocks;
DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
// Determine which blocks the value is live in. These are blocks which lead
// to uses.
SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
unsigned CurrentVersion = 0;
SmallPtrSet<PHINode*, 16> InsertedPHINodes;
std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
while (!Info.DefiningBlocks.empty()) {
BasicBlock *BB = Info.DefiningBlocks.back();
Info.DefiningBlocks.pop_back();
// Look up the DF for this write, add it to defining blocks.
DominanceFrontier::const_iterator it = DF.find(BB);
if (it == DF.end()) continue;
const DominanceFrontier::DomSetType &S = it->second;
// In theory we don't need the indirection through the DFBlocks vector.
// In practice, the order of calling QueuePhiNode would depend on the
// (unspecified) ordering of basic blocks in the dominance frontier,
// which would give PHI nodes non-determinstic subscripts. Fix this by
// processing blocks in order of the occurance in the function.
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P) {
// If the frontier block is not in the live-in set for the alloca, don't
// bother processing it.
if (!LiveInBlocks.count(*P))
continue;
DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
// Sort by which the block ordering in the function.
if (DFBlocks.size() > 1)
std::sort(DFBlocks.begin(), DFBlocks.end());
for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
BasicBlock *BB = DFBlocks[i].second;
if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
Info.DefiningBlocks.push_back(BB);
}
DFBlocks.clear();
/// RewriteSingleStoreAlloca - If there is only a single store to this value,
/// replace any loads of it that are directly dominated by the definition with
/// the value stored.
void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
AllocaInfo &Info,
LargeBlockInfo &LBI) {
StoreInst *OnlyStore = Info.OnlyStore;
bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
BasicBlock *StoreBB = OnlyStore->getParent();
int StoreIndex = -1;
// Clear out UsingBlocks. We will reconstruct it here if needed.
Info.UsingBlocks.clear();
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
Instruction *UserInst = cast<Instruction>(*UI++);
if (!isa<LoadInst>(UserInst)) {
assert(UserInst == OnlyStore && "Should only have load/stores");
LoadInst *LI = cast<LoadInst>(UserInst);
// Okay, if we have a load from the alloca, we want to replace it with the
// only value stored to the alloca. We can do this if the value is
// dominated by the store. If not, we use the rest of the mem2reg machinery
// to insert the phi nodes as needed.
if (!StoringGlobalVal) { // Non-instructions are always dominated.
if (LI->getParent() == StoreBB) {
// If we have a use that is in the same block as the store, compare the
// indices of the two instructions to see which one came first. If the
// load came before the store, we can't handle it.
if (StoreIndex == -1)
StoreIndex = LBI.getInstructionIndex(OnlyStore);
if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
// Can't handle this load, bail out.
Info.UsingBlocks.push_back(StoreBB);
continue;
} else if (LI->getParent() != StoreBB &&
!dominates(StoreBB, LI->getParent())) {
// If the load and store are in different blocks, use BB dominance to
// check their relationships. If the store doesn't dom the use, bail
// out.
Info.UsingBlocks.push_back(LI->getParent());
continue;
// Otherwise, we *can* safely rewrite this load.
Value *ReplVal = OnlyStore->getOperand(0);
// If the replacement value is the load, this must occur in unreachable
// code.
if (ReplVal == LI)
ReplVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(ReplVal);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
LI->eraseFromParent();
LBI.deleteValue(LI);
/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
/// first element of a pair.
struct StoreIndexSearchPredicate {
bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
const std::pair<unsigned, StoreInst*> &RHS) {
return LHS.first < RHS.first;
}
};
/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
/// the basic block using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true. This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths. e.g. code like
/// this is potentially correct:
///
/// for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
///
void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
LargeBlockInfo &LBI) {
// The trickiest case to handle is when we have large blocks. Because of this,
// this code is optimized assuming that large blocks happen. This does not
// significantly pessimize the small block case. This uses LargeBlockInfo to
// make it efficient to get the index of various operations in the block.
// Clear out UsingBlocks. We will reconstruct it here if needed.
Info.UsingBlocks.clear();
// Walk the use-def list of the alloca, getting the locations of all stores.
typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
StoresByIndexTy StoresByIndex;
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI)
if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
// If there are no stores to the alloca, just replace any loads with undef.
if (StoresByIndex.empty()) {
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
LBI.deleteValue(LI);
LI->eraseFromParent();
}
return;
}
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// Sort the stores by their index, making it efficient to do a lookup with a
// binary search.
std::sort(StoresByIndex.begin(), StoresByIndex.end());
// Walk all of the loads from this alloca, replacing them with the nearest
// store above them, if any.
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
LoadInst *LI = dyn_cast<LoadInst>(*UI++);
if (!LI) continue;
unsigned LoadIdx = LBI.getInstructionIndex(LI);
// Find the nearest store that has a lower than this load.
StoresByIndexTy::iterator I =
std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
std::pair<unsigned, StoreInst*>(LoadIdx, 0),
StoreIndexSearchPredicate());
// If there is no store before this load, then we can't promote this load.
if (I == StoresByIndex.begin()) {
// Can't handle this load, bail out.
Info.UsingBlocks.push_back(LI->getParent());
continue;
}
// Otherwise, there was a store before this load, the load takes its value.
--I;
LI->replaceAllUsesWith(I->second->getOperand(0));
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
LI->eraseFromParent();
LBI.deleteValue(LI);
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
Chris Lattner
committed
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version,
SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
// Look up the basic-block in question.
PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
// If the BB already has a phi node added for the i'th alloca then we're done!
if (PN) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." + Twine(Version++),
Daniel Dunbar
committed
BB->begin());
++NumPHIInsert;
PhiToAllocaMap[PN] = AllocaNo;
PN->reserveOperandSpace(getNumPreds(BB));
InsertedPHINodes.insert(PN);
if (AST && isa<PointerType>(PN->getType()))
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
// stores to the allocas which we are promoting. IncomingVals indicates what
// value each Alloca contains on exit from the predecessor block Pred.
//
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
RenamePassData::ValVector &IncomingVals,
std::vector<RenamePassData> &Worklist) {
NextIteration:
// If we are inserting any phi nodes into this BB, they will already be in the
// block.
if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
// If we have PHI nodes to update, compute the number of edges from Pred to
// BB.
if (PhiToAllocaMap.count(APN)) {
// We want to be able to distinguish between PHI nodes being inserted by
// this invocation of mem2reg from those phi nodes that already existed in
// the IR before mem2reg was run. We determine that APN is being inserted
// because it is missing incoming edges. All other PHI nodes being
// inserted by this pass of mem2reg will have the same number of incoming
// operands so far. Remember this count.
unsigned NewPHINumOperands = APN->getNumOperands();
unsigned NumEdges = 0;
Nick Lewycky
committed
for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
if (*I == BB)
++NumEdges;
assert(NumEdges && "Must be at least one edge from Pred to BB!");
// Add entries for all the phis.
BasicBlock::iterator PNI = BB->begin();
do {
unsigned AllocaNo = PhiToAllocaMap[APN];
// Add N incoming values to the PHI node.
for (unsigned i = 0; i != NumEdges; ++i)
APN->addIncoming(IncomingVals[AllocaNo], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[AllocaNo] = APN;
// Get the next phi node.
++PNI;
APN = dyn_cast<PHINode>(PNI);
if (APN == 0) break;
// Verify that it is missing entries. If not, it is not being inserted
// by this mem2reg invocation so we want to ignore it.
} while (APN->getNumOperands() == NewPHINumOperands);
// Don't revisit blocks.
if (!Visited.insert(BB)) return;
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
if (!Src) continue;
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI == AllocaLookup.end()) continue;
Value *V = IncomingVals[AI->second];
// Anything using the load now uses the current value.
LI->replaceAllUsesWith(V);
if (AST && isa<PointerType>(LI->getType()))
AST->deleteValue(LI);
BB->getInstList().erase(LI);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
if (!Dest) continue;
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai == AllocaLookup.end())
continue;
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
BB->getInstList().erase(SI);
// 'Recurse' to our successors.
Nick Lewycky
committed
succ_iterator I = succ_begin(BB), E = succ_end(BB);
if (I == E) return;
// Keep track of the successors so we don't visit the same successor twice
SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
Nick Lewycky
committed
// Handle the first successor without using the worklist.
VisitedSuccs.insert(*I);
Pred = BB;
Nick Lewycky
committed
BB = *I;
++I;
for (; I != E; ++I)
if (VisitedSuccs.insert(*I))
Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
goto NextIteration;
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///