Newer
Older
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
MaheshRavishankar
committed
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
River Riddle
committed
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::linalg;
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(context,
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
})));
}
/// Update the index accesses of linalg operations having index semantics.
static void replaceUnitDimIndexOps(GenericOp genericOp,
const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
assert(genericOp->getNumRegions() == 1 &&
genericOp->getRegion(0).getBlocks().size() == 1 &&
"expected generic operation to have one block.");
Block &block = genericOp->getRegion(0).front();
for (IndexOp indexOp : llvm::make_early_inc_range(block.getOps<IndexOp>())) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(indexOp);
if (unitDims.count(indexOp.dim()) != 0) {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(indexOp, 0);
} else {
// Update the dimension of the index operation if needed.
unsigned droppedDims = llvm::count_if(
unitDims, [&](unsigned dim) { return dim < indexOp.dim(); });
if (droppedDims != 0)
rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
indexOp.dim() - droppedDims);
}
}
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t> dims = genericOp.getStaticShape();
MaheshRavishankar
committed
// Find all the reduction iterators. Those need some special consideration
// (see below).
auto getLoopDimsOfType =
[&](StringRef iteratorTypeName) -> SmallVector<unsigned, 4> {
SmallVector<AffineExpr> dimExprs;
getDimsOfType(genericOp, iteratorTypeName, dimExprs);
MaheshRavishankar
committed
return llvm::to_vector<4>(llvm::map_range(dimExprs, [](AffineExpr expr) {
return expr.cast<AffineDimExpr>().getPosition();
}));
};
auto reductionDims = getLoopDimsOfType(getReductionIteratorTypeName());
DenseSet<unsigned> unitDims;
MaheshRavishankar
committed
SmallVector<unsigned, 4> unitDimsReductionLoops;
ArrayAttr iteratorTypes = genericOp.iterator_types();
for (auto expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
MaheshRavishankar
committed
if (dims[dimExpr.getPosition()] == 1) {
if (isParallelIterator(iteratorTypes[expr.index()]))
unitDims.insert(expr.index());
else if (isReductionIterator(iteratorTypes[expr.index()]))
unitDimsReductionLoops.push_back(expr.index());
}
MaheshRavishankar
committed
// Reduction loops can be dropped if there is at least one other reduction
// loop that is not dropped. This accounts for the initial value read in the
// reduction loop.
if (!unitDimsReductionLoops.empty() && reductionDims.size() > 1) {
if (unitDimsReductionLoops.size() == reductionDims.size())
unitDims.insert(reductionDims.begin(), std::prev(reductionDims.end()));
else
unitDims.insert(unitDimsReductionLoops.begin(),
unitDimsReductionLoops.end());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return genericOp.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(genericOp);
genericOp.indexing_mapsAttr(newIndexingMapAttr);
genericOp.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes));
replaceUnitDimIndexOps(genericOp, unitDims, rewriter);
rewriter.finalizeRootUpdate(genericOp);
return success();
}
};
struct UnitExtentReplacementInfo {
RankedTensorType type;
AffineMap indexMap;
ArrayAttr reassociation;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(GenericOp genericOp,
OpOperand *opOperand,
MLIRContext *context) {
AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand);
ArrayRef<int64_t> shape = genericOp.getShape(opOperand);
ArrayRef<AffineExpr> exprs = indexingMap.getResults();
SmallVector<AffineExpr, 2> reassociations;
SmallVector<Attribute, 4> reassociationMaps;
SmallVector<AffineExpr, 4> newIndexExprs;
SmallVector<int64_t, 4> newShape;
int64_t origRank = genericOp.getRank(opOperand);
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
unsigned dim = 0;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociations.push_back(getAffineDimExpr(dim++, context));
while (dim < origRank) {
reassociations.push_back(getAffineDimExpr(dim, context));
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
// Fold all following dimensions that are unit-extent.
while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
++dim;
reassociations.push_back(getAffineDimExpr(dim, context));
}
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
Alexander Belyaev
committed
origRank, /*symbolCount = */ 0, reassociations, context)));
reassociations.clear();
++dim;
}
UnitExtentReplacementInfo info = {
RankedTensorType::get(newShape,
getElementTypeOrSelf(opOperand->get().getType())),
AffineMap::get(indexingMap.getNumDims(), indexingMap.getNumSymbols(),
newIndexExprs, context),
ArrayAttr::get(context, reassociationMaps)};
return info;
}
namespace {
Alexander Belyaev
committed
SmallVector<ReassociationExprs, 2>
convertAffineMapArrayToExprs(ArrayAttr affineMapArrayAttr) {
SmallVector<ReassociationExprs, 2> reassociationExprs;
for (auto attr : affineMapArrayAttr)
reassociationExprs.push_back(
llvm::to_vector<4>(attr.cast<AffineMapAttr>().getValue().getResults()));
return reassociationExprs;
}
/// Pattern to replace tensors operands/results that are unit extents.
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = genericOp.getLoc();
SmallVector<AffineMap, 4> newIndexingMaps;
SmallVector<ArrayAttr, 4> reassociationMaps;
SmallVector<ShapedType, 4> newInputOutputTypes;
bool doCanonicalization = false;
for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) {
auto replacementInfo = replaceUnitExtents(genericOp, opOperand, context);
reassociationMaps.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
newInputOutputTypes.push_back(replacementInfo.type);
doCanonicalization |= replacementInfo.type != opOperand->get().getType();
}
// If the indexing maps of the result operation are not invertible (i.e. not
// legal), abort.
if (!doCanonicalization ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// If any operand type change, insert a reshape to convert from the original
// type to the new type.
// TODO: get rid of flattenedIdx which assumes operand order and contiguity.
unsigned flattenedIdx = 0;
auto insertReshapes = [&](ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(values.size());
for (auto operand : llvm::enumerate(values)) {
if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
res.push_back(operand.value());
else {
res.push_back(rewriter.create<TensorCollapseShapeOp>(
loc, newInputOutputTypes[flattenedIdx], operand.value(),
Alexander Belyaev
committed
convertAffineMapArrayToExprs(reassociationMaps[flattenedIdx])));
++flattenedIdx;
return res;
};
SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs());
SmallVector<Value, 4> newOutputs = insertReshapes(genericOp.outputs());
// If any result type changes, insert a reshape to convert from the original
// type to the new type.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(genericOp.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]);
GenericOp replacementOp = rewriter.create<GenericOp>(
loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
llvm::to_vector<4>(
genericOp.iterator_types().template getAsValueRange<StringAttr>()));
rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(),
replacementOp.region().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value, 4> resultReplacements;
for (auto result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumInputs();
RankedTensorType origResultType = genericOp.getResult(result.index())
.getType()
.template cast<RankedTensorType>();
if (origResultType != result.value().getType()) {
resultReplacements.push_back(rewriter.create<TensorExpandShapeOp>(
Alexander Belyaev
committed
loc, origResultType, result.value(),
convertAffineMapArrayToExprs(reassociationMaps[index])));
resultReplacements.push_back(result.value());
}
rewriter.replaceOp(genericOp, resultReplacements);
return success();
}
};
MaheshRavishankar
committed
} // namespace
MaheshRavishankar
committed
MaheshRavishankar
committed
/// Get the reassociation maps to fold the result of a subtensor (or source of a
/// subtensor_insert) operation with given offsets, and sizes to its
/// rank-reduced version. This is only done for the cases where the size is 1
/// and offset is 0. Strictly speaking the offset 0 is not required in general,
/// but non-zero offsets are not handled by SPIR-V backend at this point (and
/// potentially cannot be handled).
static Optional<SmallVector<ReassociationIndices>>
getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) {
SmallVector<ReassociationIndices> reassociation;
ReassociationIndices curr;
for (auto it : llvm::enumerate(mixedSizes)) {
auto dim = it.index();
auto size = it.value();
curr.push_back(dim);
auto attr = size.dyn_cast<Attribute>();
if (attr && attr.cast<IntegerAttr>().getInt() == 1)
continue;
reassociation.emplace_back(ReassociationIndices{});
std::swap(reassociation.back(), curr);
}
MaheshRavishankar
committed
// When the reassociations are not empty, then fold the remaining
// unit-dimensions into the last dimension. If the reassociations so far is
// empty, then leave it emtpy. This will fold everything to a rank-0 tensor.
if (!curr.empty() && !reassociation.empty())
MaheshRavishankar
committed
reassociation.back().append(curr.begin(), curr.end());
return reassociation;
}
namespace {
/// Convert `subtensor` operations to rank-reduced versions.
struct UseRankReducedSubTensorOp : public OpRewritePattern<SubTensorOp> {
MaheshRavishankar
committed
using OpRewritePattern<SubTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
PatternRewriter &rewriter) const override {
MaheshRavishankar
committed
RankedTensorType resultType = subTensorOp.getType();
SmallVector<OpFoldResult> offsets = subTensorOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = subTensorOp.getMixedSizes();
SmallVector<OpFoldResult> strides = subTensorOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
MaheshRavishankar
committed
return failure();
MaheshRavishankar
committed
auto rankReducedType =
SubTensorOp::inferRankReducedResultType(reassociation->size(),
subTensorOp.getSourceType(),
offsets, sizes, strides)
.cast<RankedTensorType>();
Location loc = subTensorOp.getLoc();
Value newSubTensor = rewriter.create<SubTensorOp>(
loc, rankReducedType, subTensorOp.source(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<TensorExpandShapeOp>(
subTensorOp, resultType, newSubTensor, *reassociation);
MaheshRavishankar
committed
return success();
}
};
MaheshRavishankar
committed
MaheshRavishankar
committed
/// Convert `subtensor_insert` operations to rank-reduced versions.
struct UseRankReducedSubTensorInsertOp
: public OpRewritePattern<SubTensorInsertOp> {
using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorInsertOp insertOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertOp.getSourceType();
SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = insertOp.getMixedSizes();
SmallVector<OpFoldResult> strides = insertOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(sourceType.getRank()))
MaheshRavishankar
committed
return failure();
MaheshRavishankar
committed
Location loc = insertOp.getLoc();
auto reshapedSource = rewriter.create<TensorCollapseShapeOp>(
MaheshRavishankar
committed
loc, insertOp.source(), *reassociation);
rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(),
insertOp.getMixedSizes(), insertOp.getMixedStrides());
MaheshRavishankar
committed
return success();
}
};
MaheshRavishankar
committed
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
MaheshRavishankar
committed
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
patterns.add<FoldUnitDimLoops, ReplaceUnitExtentTensors,
MaheshRavishankar
committed
UseRankReducedSubTensorOp, UseRankReducedSubTensorInsertOp>(
context);
TensorCollapseShapeOp::getCanonicalizationPatterns(patterns, context);
TensorExpandShapeOp::getCanonicalizationPatterns(patterns, context);
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnFunction() override {
FuncOp funcOp = getFunction();
MLIRContext *context = funcOp.getContext();
RewritePatternSet patterns(context);
if (foldOneTripLoopsOnly)
patterns.add<FoldUnitDimLoops>(context);
MaheshRavishankar
committed
populateFoldUnitExtentDimsPatterns(patterns);
(void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns));
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}