Newer
Older
bool isFeasibleNull = false;
Ted Kremenek
committed
GRStateRef StNull = GRStateRef(Assume(St, LV, false, isFeasibleNull),
getStateManager());
if (isFeasibleNull) {
Ted Kremenek
committed
// Use the Generic Data Map to mark in the state what lval was null.
const RVal* PersistentLV = getBasicVals().getPersistentRVal(LV);
StNull = StNull.set<GRState::NullDerefTag>(PersistentLV);
// We don't use "MakeNode" here because the node will be a sink
// and we have no intention of processing it later.
ProgramPoint::Kind K =
isLoad ? ProgramPoint::PostLoadKind : ProgramPoint::PostStmtKind;
NodeTy* NullNode = Builder->generateNode(Ex, StNull, Pred, K);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
else ExplicitNullDeref.insert(NullNode);
}
}
return isFeasibleNotNull ? StNotNull : NULL;
//===----------------------------------------------------------------------===//
// Transfer function: Function calls.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator AI,
CallExpr::arg_iterator AE,
NodeSet& Dst) {
// Process the arguments.
if (AI != AE) {
NodeSet DstTmp;
Visit(*AI, Pred, DstTmp);
++AI;
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
VisitCall(CE, *DI, AI, AE, Dst);
return;
}
// If we reach here we have processed all of the arguments. Evaluate
// the callee expression.
NodeSet DstTmp;
Expr* Callee = CE->getCallee()->IgnoreParens();
Zhongxing Xu
committed
Visit(Callee, Pred, DstTmp);
// Finally, evaluate the function call.
for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
RVal L = GetRVal(St, Callee);
// FIXME: Add support for symbolic function calls (calls involving
// function pointer values that are symbolic).
// Check for undefined control-flow or calls to NULL.
Ted Kremenek
committed
if (L.isUndef() || isa<lval::ConcreteInt>(L)) {
NodeTy* N = Builder->generateNode(CE, St, *DI);
if (N) {
N->markAsSink();
BadCalls.insert(N);
}
Ted Kremenek
committed
}
// Check for the "noreturn" attribute.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (isa<lval::FuncVal>(L)) {
FunctionDecl* FD = cast<lval::FuncVal>(L).getDecl();
if (FD->getAttr<NoReturnAttr>())
Ted Kremenek
committed
Builder->BuildSinks = true;
else {
// HACK: Some functions are not marked noreturn, and don't return.
// Here are a few hardwired ones. If this takes too long, we can
// potentially cache these results.
const char* s = FD->getIdentifier()->getName();
unsigned n = strlen(s);
switch (n) {
default:
break;
case 4:
if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
break;
case 5:
if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
else if (!memcmp(s, "error", 5)) {
if (CE->getNumArgs() > 0) {
RVal X = GetRVal(St, *CE->arg_begin());
// FIXME: use Assume to inspect the possible symbolic value of
// X. Also check the specific signature of error().
nonlval::ConcreteInt* CI = dyn_cast<nonlval::ConcreteInt>(&X);
if (CI && CI->getValue() != 0)
Builder->BuildSinks = true;
if (!memcmp(s, "Assert", 6)) {
Builder->BuildSinks = true;
break;
}
// FIXME: This is just a wrapper around throwing an exception.
// Eventually inter-procedural analysis should handle this easily.
if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true;
break;
case 7:
if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true;
case 8:
if (!memcmp(s ,"db_error", 8)) Builder->BuildSinks = true;
break;
case 12:
if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true;
break;
case 13:
if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true;
break;
case 14:
if (!memcmp(s, "dtrace_assfail", 14)) Builder->BuildSinks = true;
break;
if (!memcmp(s, "_XCAssertionFailureHandler", 26) ||
!memcmp(s, "_DTAssertionFailureHandler", 26))
}
}
}
Ted Kremenek
committed
// Evaluate the call.
IdentifierInfo* Info = cast<lval::FuncVal>(L).getDecl()->getIdentifier();
switch (id) {
case Builtin::BI__builtin_expect: {
// For __builtin_expect, just return the value of the subexpression.
assert (CE->arg_begin() != CE->arg_end());
RVal X = GetRVal(St, *(CE->arg_begin()));
MakeNode(Dst, CE, *DI, SetRVal(St, CE, X));
continue;
}
default:
break;
}
}
// Check any arguments passed-by-value against being undefined.
bool badArg = false;
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
if (GetRVal(GetState(*DI), *I).isUndef()) {
NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
if (N) {
N->markAsSink();
UndefArgs[N] = *I;
}
if (badArg)
continue;
// Dispatch to the plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalCall(Dst, CE, L, *DI);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size &&
!Builder->HasGeneratedNode)
MakeNode(Dst, CE, *DI, St);
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C message expressions.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
NodeSet& Dst){
VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(),
Pred, Dst);
}
void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME,
ObjCMessageExpr::arg_iterator AI,
ObjCMessageExpr::arg_iterator AE,
NodeTy* Pred, NodeSet& Dst) {
if (AI == AE) {
// Process the receiver.
if (Expr* Receiver = ME->getReceiver()) {
NodeSet Tmp;
Visit(Receiver, Pred, Tmp);
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprDispatchHelper(ME, *NI, Dst);
return;
}
VisitObjCMessageExprDispatchHelper(ME, Pred, Dst);
return;
}
NodeSet Tmp;
Visit(*AI, Pred, Tmp);
++AI;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst);
}
void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME,
NodeTy* Pred,
NodeSet& Dst) {
// FIXME: More logic for the processing the method call.
Ted Kremenek
committed
bool RaisesException = false;
if (Expr* Receiver = ME->getReceiver()) {
RVal L = GetRVal(St, Receiver);
// Check for undefined control-flow or calls to NULL.
if (L.isUndef()) {
NodeTy* N = Builder->generateNode(ME, St, Pred);
if (N) {
N->markAsSink();
UndefReceivers.insert(N);
}
return;
}
Ted Kremenek
committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
// Check if the "raise" message was sent.
if (ME->getSelector() == RaiseSel)
RaisesException = true;
}
else {
IdentifierInfo* ClsName = ME->getClassName();
Selector S = ME->getSelector();
// Check for special instance methods.
if (!NSExceptionII) {
ASTContext& Ctx = getContext();
NSExceptionII = &Ctx.Idents.get("NSException");
}
if (ClsName == NSExceptionII) {
enum { NUM_RAISE_SELECTORS = 2 };
// Lazily create a cache of the selectors.
if (!NSExceptionInstanceRaiseSelectors) {
ASTContext& Ctx = getContext();
NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS];
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
unsigned idx = 0;
// raise:format:
II.push_back(&Ctx.Idents.get("raise"));
II.push_back(&Ctx.Idents.get("format"));
Ted Kremenek
committed
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
// raise:format::arguments:
II.push_back(&Ctx.Idents.get("arguments"));
Ted Kremenek
committed
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
}
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
if (S == NSExceptionInstanceRaiseSelectors[i]) {
RaisesException = true; break;
}
}
}
// Check for any arguments that are uninitialized/undefined.
for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
I != E; ++I) {
if (GetRVal(St, *I).isUndef()) {
// Generate an error node for passing an uninitialized/undefined value
// as an argument to a message expression. This node is a sink.
NodeTy* N = Builder->generateNode(ME, St, Pred);
if (N) {
N->markAsSink();
MsgExprUndefArgs[N] = *I;
}
return;
}
Ted Kremenek
committed
}
// Check if we raise an exception. For now treat these as sinks. Eventually
// we will want to handle exceptions properly.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (RaisesException)
Builder->BuildSinks = true;
// Dispatch to plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalObjCMessageExpr(Dst, ME, Pred);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
MakeNode(Dst, ME, Pred, St);
//===----------------------------------------------------------------------===//
// Transfer functions: Miscellaneous statements.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
NodeSet S1;
QualType T = CastE->getType();
if (T->isReferenceType())
Zhongxing Xu
committed
VisitLValue(Ex, Pred, S1);
else
Visit(Ex, Pred, S1);
Ted Kremenek
committed
// Check for casting to "void".
if (T->isVoidType()) {
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
Dst.Add(*I1);
return;
}
Ted Kremenek
committed
// FIXME: The rest of this should probably just go into EvalCall, and
// let the transfer function object be responsible for constructing
// nodes.
QualType ExTy = Ex->getType();
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
RVal V = GetRVal(St, Ex);
Ted Kremenek
committed
// Unknown?
if (V.isUnknown()) {
Dst.Add(N);
continue;
}
// Undefined?
if (V.isUndef()) {
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
Ted Kremenek
committed
// For const casts, just propagate the value.
ASTContext& C = getContext();
if (C.getCanonicalType(T).getUnqualifiedType() ==
C.getCanonicalType(ExTy).getUnqualifiedType()) {
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
Ted Kremenek
committed
// Check for casts from pointers to integers.
Ted Kremenek
committed
if (T->isIntegerType() && LVal::IsLValType(ExTy)) {
Ted Kremenek
committed
unsigned bits = getContext().getTypeSize(ExTy);
// FIXME: Determine if the number of bits of the target type is
// equal or exceeds the number of bits to store the pointer value.
// If not, flag an error.
Ted Kremenek
committed
V = nonlval::LValAsInteger::Make(getBasicVals(), cast<LVal>(V), bits);
Ted Kremenek
committed
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// Check for casts from integers to pointers.
Ted Kremenek
committed
if (LVal::IsLValType(T) && ExTy->isIntegerType())
Ted Kremenek
committed
if (nonlval::LValAsInteger *LV = dyn_cast<nonlval::LValAsInteger>(&V)) {
// Just unpackage the lval and return it.
V = LV->getLVal();
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// All other cases.
MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType())));
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {
Ted Kremenek
committed
// The CFG has one DeclStmt per Decl.
ScopedDecl* D = *DS->decl_begin();
return;
const VarDecl* VD = dyn_cast<VarDecl>(D);
// FIXME: Add support for local arrays.
if (VD->getType()->isArrayType()) {
return;
}
Expr* Ex = const_cast<Expr*>(VD->getInit());
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
NodeSet Tmp;
if (Ex)
Visit(Ex, Pred, Tmp);
if (Tmp.empty())
Tmp.Add(Pred);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
St = StateMgr.AddDecl(St, VD, Ex, Builder->getCurrentBlockCount());
}
}
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex,
NodeTy* Pred,
NodeSet& Dst) {
QualType T = Ex->getArgumentType();
uint64_t amt;
if (Ex->isSizeOf()) {
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
Ted Kremenek
committed
// Some code tries to take the sizeof an ObjCInterfaceType, relying that
// the compiler has laid out its representation. Just report Unknown
// for these.
if (T->isObjCInterfaceType())
return;
amt = 1; // Handle sizeof(void)
if (T != getContext().VoidTy)
amt = getContext().getTypeSize(T) / 8;
}
else // Get alignment of the type.
amt = getContext().getTypeAlign(T) / 8;
SetRVal(GetState(Pred), Ex,
Ted Kremenek
committed
NonLVal::MakeVal(getBasicVals(), amt, Ex->getType())));
Ted Kremenek
committed
}
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
Zhongxing Xu
committed
NodeSet& Dst, bool asLValue) {
switch (U->getOpcode()) {
default:
break;
Ted Kremenek
committed
case UnaryOperator::Deref: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
RVal location = GetRVal(St, Ex);
Zhongxing Xu
committed
if (asLValue)
MakeNode(Dst, U, *I, SetRVal(St, U, location));
else
Ted Kremenek
committed
EvalLoad(Dst, U, *I, St, location);
}
Ted Kremenek
committed
case UnaryOperator::Real: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex RValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Real is an identity operation.
assert (U->getType() == Ex->getType());
Ted Kremenek
committed
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex)));
}
return;
}
case UnaryOperator::Imag: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex RValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Float returns 0.
assert (Ex->getType()->isIntegerType());
Ted Kremenek
committed
RVal X = NonLVal::MakeVal(getBasicVals(), 0, Ex->getType());
Ted Kremenek
committed
MakeNode(Dst, U, *I, SetRVal(St, U, X));
}
return;
}
// FIXME: Just report "Unknown" for OffsetOf.
case UnaryOperator::OffsetOf:
Dst.Add(Pred);
return;
Zhongxing Xu
committed
case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH.
case UnaryOperator::Extension: {
// Unary "+" is a no-op, similar to a parentheses. We still have places
// where it may be a block-level expression, so we need to
// generate an extra node that just propagates the value of the
// subexpression.
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex)));
}
return;
}
case UnaryOperator::AddrOf: {
Zhongxing Xu
committed
assert(!asLValue);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Zhongxing Xu
committed
VisitLValue(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
RVal V = GetRVal(St, Ex);
St = SetRVal(St, U, V);
MakeNode(Dst, U, *I, St);
}
return;
}
case UnaryOperator::LNot:
case UnaryOperator::Minus:
case UnaryOperator::Not: {
Zhongxing Xu
committed
assert (!asLValue);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
Ted Kremenek
committed
// Get the value of the subexpression.
RVal V = GetRVal(St, Ex);
Ted Kremenek
committed
// Perform promotions.
// FIXME: This is the right thing to do, but it currently breaks
// a bunch of tests.
// V = EvalCast(V, U->getType());
if (V.isUnknownOrUndef()) {
MakeNode(Dst, U, *I, SetRVal(St, U, V));
continue;
}
switch (U->getOpcode()) {
default:
assert(false && "Invalid Opcode.");
break;
case UnaryOperator::Not:
Ted Kremenek
committed
// FIXME: Do we need to handle promotions?
St = SetRVal(St, U, EvalComplement(cast<NonLVal>(V)));
break;
case UnaryOperator::Minus:
Ted Kremenek
committed
// FIXME: Do we need to handle promotions?
St = SetRVal(St, U, EvalMinus(U, cast<NonLVal>(V)));
break;
case UnaryOperator::LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
if (isa<LVal>(V)) {
Ted Kremenek
committed
lval::ConcreteInt X(getBasicVals().getZeroWithPtrWidth());
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<LVal>(V), X);
St = SetRVal(St, U, Result);
}
else {
Ted Kremenek
committed
nonlval::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
Ted Kremenek
committed
#if 0
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLVal>(V), X);
St = SetRVal(St, U, Result);
Ted Kremenek
committed
#else
EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLVal>(V), X, *I);
continue;
#endif
}
break;
}
MakeNode(Dst, U, *I, St);
}
return;
}
case UnaryOperator::SizeOf: {
QualType T = U->getSubExpr()->getType();
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
uint64_t size = getContext().getTypeSize(T) / 8;
Ted Kremenek
committed
St = SetRVal(St, U, NonLVal::MakeVal(getBasicVals(), size, U->getType()));
MakeNode(Dst, U, Pred, St);
return;
}
}
Ted Kremenek
committed
// Handle ++ and -- (both pre- and post-increment).
Ted Kremenek
committed
assert (U->isIncrementDecrementOp());
NodeSet Tmp;
Expr* Ex = U->getSubExpr()->IgnoreParens();
Zhongxing Xu
committed
VisitLValue(Ex, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
RVal V1 = GetRVal(St, Ex);
// Perform a load.
NodeSet Tmp2;
EvalLoad(Tmp2, Ex, *I, St, V1);
for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) {
St = GetState(*I2);
RVal V2 = GetRVal(St, Ex);
// Propagate unknown and undefined values.
if (V2.isUnknownOrUndef()) {
MakeNode(Dst, U, *I2, SetRVal(St, U, V2));
continue;
}
Ted Kremenek
committed
// Handle all other values.
Ted Kremenek
committed
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
: BinaryOperator::Sub;
Ted Kremenek
committed
RVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U));
St = SetRVal(St, U, U->isPostfix() ? V2 : Result);
// Perform the store.
EvalStore(Dst, U, *I2, St, V1, Result);
Ted Kremenek
committed
}
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
}
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
AsmStmt::outputs_iterator I,
AsmStmt::outputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
return;
}
NodeSet Tmp;
Zhongxing Xu
committed
VisitLValue(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
}
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
AsmStmt::inputs_iterator I,
AsmStmt::inputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to LVals. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
OE = A->end_outputs(); OI != OE; ++OI) {
RVal X = GetRVal(St, *OI);
assert (!isa<NonLVal>(X)); // Should be an Lval, or unknown, undef.
if (isa<LVal>(X))
St = SetRVal(St, cast<LVal>(X), UnknownVal());
}
return;
}
NodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
}
Ted Kremenek
committed
void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
unsigned size = Dst.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->HasGeneratedNode);
Ted Kremenek
committed
getTF().EvalReturn(Dst, *this, *Builder, S, Pred);
Ted Kremenek
committed
// Handle the case where no nodes where generated.
Ted Kremenek
committed
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
Ted Kremenek
committed
MakeNode(Dst, S, Pred, GetState(Pred));
}
void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) {
Expr* R = S->getRetValue();
if (!R) {
Ted Kremenek
committed
EvalReturn(Dst, S, Pred);
return;
}
Ted Kremenek
committed
NodeSet DstRet;
QualType T = R->getType();
if (T->isPointerLikeType()) {
// Check if any of the return values return the address of a stack variable.
NodeSet Tmp;
Visit(R, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
RVal X = GetRVal((*I)->getState(), R);
Ted Kremenek
committed
if (isa<lval::MemRegionVal>(X)) {
Ted Kremenek
committed
// Determine if the value is on the stack.
const MemRegion* R = cast<lval::MemRegionVal>(&X)->getRegion();
if (R && getStateManager().hasStackStorage(R)) {
// Create a special node representing the v
NodeTy* RetStackNode = Builder->generateNode(S, GetState(*I), *I);
if (RetStackNode) {
RetStackNode->markAsSink();
RetsStackAddr.insert(RetStackNode);
}
continue;
}
}
Ted Kremenek
committed
DstRet.Add(*I);
}
}
else
Ted Kremenek
committed
Visit(R, Pred, DstRet);
for (NodeSet::iterator I=DstRet.begin(), E=DstRet.end(); I!=E; ++I)
EvalReturn(Dst, S, *I);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Binary operators.
//===----------------------------------------------------------------------===//
bool GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* St,
NodeTy* Pred, RVal Denom) {
// Divide by undefined? (potentially zero)
if (Denom.isUndef()) {
NodeTy* DivUndef = Builder->generateNode(Ex, St, Pred);
if (DivUndef) {
DivUndef->markAsSink();
ExplicitBadDivides.insert(DivUndef);
}
return true;
}
// Check for divide/remainder-by-zero.
// First, "assume" that the denominator is 0 or undefined.
bool isFeasibleZero = false;
const GRState* ZeroSt = Assume(St, Denom, false, isFeasibleZero);
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
// Second, "assume" that the denominator cannot be 0.
bool isFeasibleNotZero = false;
St = Assume(St, Denom, true, isFeasibleNotZero);
// Create the node for the divide-by-zero (if it occurred).
if (isFeasibleZero)
if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) {
DivZeroNode->markAsSink();
if (isFeasibleNotZero)
ImplicitBadDivides.insert(DivZeroNode);
else
ExplicitBadDivides.insert(DivZeroNode);
}
return !isFeasibleNotZero;
}
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet Tmp1;
Expr* LHS = B->getLHS()->IgnoreParens();
Expr* RHS = B->getRHS()->IgnoreParens();
if (B->isAssignmentOp())
Zhongxing Xu
committed
VisitLValue(LHS, Pred, Tmp1);
Visit(LHS, Pred, Tmp1);
for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) {
RVal LeftV = GetRVal((*I1)->getState(), LHS);
// Process the RHS.
NodeSet Tmp2;
Visit(RHS, *I1, Tmp2);
// With both the LHS and RHS evaluated, process the operation itself.
for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) {
RVal RightV = GetRVal(St, RHS);
BinaryOperator::Opcode Op = B->getOpcode();
switch (Op) {
Ted Kremenek
committed
case BinaryOperator::Assign: {
Ted Kremenek
committed
// EXPERIMENTAL: "Conjured" symbols.
if (RightV.isUnknown()) {