Skip to content
X86ISelLowering.cpp 160 KiB
Newer Older
Chris Lattner's avatar
Chris Lattner committed
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Intrinsics.h"
Evan Cheng's avatar
Evan Cheng committed
#include "llvm/ADT/VectorExtras.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Cheng's avatar
Evan Cheng committed
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

// FIXME: temporary.
#include "llvm/Support/CommandLine.h"
static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
                                  cl::desc("Enable fastcc on X86"));

X86TargetLowering::X86TargetLowering(TargetMachine &TM)
  : TargetLowering(TM) {
  Subtarget = &TM.getSubtarget<X86Subtarget>();
  X86ScalarSSE = Subtarget->hasSSE2();

  // Set up the TargetLowering object.

  // X86 is weird, it always uses i8 for shift amounts and setcc results.
  setShiftAmountType(MVT::i8);
  setSetCCResultType(MVT::i8);
  setSetCCResultContents(ZeroOrOneSetCCResult);
  setSchedulingPreference(SchedulingForRegPressure);
  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
  setStackPointerRegisterToSaveRestore(X86::ESP);
Evan Cheng's avatar
Evan Cheng committed
  if (!Subtarget->isTargetDarwin())
    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    setUseUnderscoreSetJmpLongJmp(true);
    
  // Add legal addressing mode scale values.
  addLegalAddressScale(8);
  addLegalAddressScale(4);
  addLegalAddressScale(2);
  // Enter the ones which require both scale + index last. These are more
  // expensive.
  addLegalAddressScale(9);
  addLegalAddressScale(5);
  addLegalAddressScale(3);
  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
  addRegisterClass(MVT::i32, X86::GR32RegisterClass);

  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
  // operation.
  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);

  if (X86ScalarSSE)
    // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead.
    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Expand);
  else
    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);

  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
  // SSE has no i16 to fp conversion, only i32
  if (X86ScalarSSE)
    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
Evan Cheng's avatar
Evan Cheng committed
  else {
    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
  }
  // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64
  // isn't legal.
  setOperationAction(ISD::SINT_TO_FP       , MVT::i64  , Custom);
  setOperationAction(ISD::FP_TO_SINT       , MVT::i64  , Custom);

  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);

  if (X86ScalarSSE) {
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
  } else {
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
  }

  // Handle FP_TO_UINT by promoting the destination to a larger signed
  // conversion.
  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);

  if (X86ScalarSSE && !Subtarget->hasSSE3())
    // Expand FP_TO_UINT into a select.
    // FIXME: We would like to use a Custom expander here eventually to do
    // the optimal thing for SSE vs. the default expansion in the legalizer.
    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Expand);
  else
    // With SSE3 we can use fisttpll to convert to a signed i64.
    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);

  setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
  setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
  setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand);
  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
Nate Begeman's avatar
Nate Begeman committed
  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
  // These should be promoted to a larger select which is supported.
  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);

  // X86 wants to expand cmov itself.
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
  // X86 ret instruction may pop stack.
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::RET             , MVT::Other, Custom);
  // Darwin ABI issue.
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
  // X86 wants to expand memset / memcpy itself.
Evan Cheng's avatar
Evan Cheng committed
  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
  // We don't have line number support yet.
  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskey's avatar
Jim Laskey committed
  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Evan Cheng's avatar
Evan Cheng committed
  // FIXME - use subtarget debug flags
Evan Cheng's avatar
Evan Cheng committed
  if (!Subtarget->isTargetDarwin())
Evan Cheng's avatar
Evan Cheng committed
    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Nate Begeman's avatar
Nate Begeman committed
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
  
  // Use the default implementation.
  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); 
  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);

  if (X86ScalarSSE) {
    // Set up the FP register classes.
    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
    // Use ANDPD to simulate FABS.
    setOperationAction(ISD::FABS , MVT::f64, Custom);
    setOperationAction(ISD::FABS , MVT::f32, Custom);

    // Use XORP to simulate FNEG.
    setOperationAction(ISD::FNEG , MVT::f64, Custom);
    setOperationAction(ISD::FNEG , MVT::f32, Custom);

Evan Cheng's avatar
Evan Cheng committed
    // We don't support sin/cos/fmod
    setOperationAction(ISD::FSIN , MVT::f64, Expand);
    setOperationAction(ISD::FCOS , MVT::f64, Expand);
    setOperationAction(ISD::FREM , MVT::f64, Expand);
    setOperationAction(ISD::FSIN , MVT::f32, Expand);
    setOperationAction(ISD::FCOS , MVT::f32, Expand);
    setOperationAction(ISD::FREM , MVT::f32, Expand);

    // Expand FP immediates into loads from the stack, except for the special
    // cases we handle.
    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    addLegalFPImmediate(+0.0); // xorps / xorpd
  } else {
    // Set up the FP register classes.
    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
    
    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
    
    if (!UnsafeFPMath) {
      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    }

    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    addLegalFPImmediate(+0.0); // FLD0
    addLegalFPImmediate(+1.0); // FLD1
    addLegalFPImmediate(-0.0); // FLD0/FCHS
    addLegalFPImmediate(-1.0); // FLD1/FCHS
  }
Evan Cheng's avatar
Evan Cheng committed
  // First set operation action for all vector types to expand. Then we
  // will selectively turn on ones that can be effectively codegen'd.
  for (unsigned VT = (unsigned)MVT::Vector + 1;
       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
Evan Cheng's avatar
Evan Cheng committed
  if (Subtarget->hasMMX()) {
    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);

Evan Cheng's avatar
Evan Cheng committed
    // FIXME: add MMX packed arithmetics
    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
Evan Cheng's avatar
Evan Cheng committed
  if (Subtarget->hasSSE1()) {
    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);

    setOperationAction(ISD::AND,                MVT::v4f32, Legal);
    setOperationAction(ISD::OR,                 MVT::v4f32, Legal);
    setOperationAction(ISD::XOR,                MVT::v4f32, Legal);
    setOperationAction(ISD::ADD,                MVT::v4f32, Legal);
    setOperationAction(ISD::SUB,                MVT::v4f32, Legal);
    setOperationAction(ISD::MUL,                MVT::v4f32, Legal);
    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
Evan Cheng's avatar
Evan Cheng committed
  if (Subtarget->hasSSE2()) {
    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);

    setOperationAction(ISD::ADD,                MVT::v2f64, Legal);
    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    setOperationAction(ISD::SUB,                MVT::v2f64, Legal);
    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    setOperationAction(ISD::MUL,                MVT::v2f64, Legal);
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);

    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
    }
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);

    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 
    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);

    // Custom lower v2i64 and v2f64 selects.
    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
  // We want to custom lower some of our intrinsics.
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  // We have target-specific dag combine patterns for the following nodes:
  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);

  // FIXME: These should be based on subtarget info. Plus, the values should
  // be smaller when we are in optimizing for size mode.
  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
  allowUnalignedMemoryAccesses = true; // x86 supports it!
}

//===----------------------------------------------------------------------===//
//                    C Calling Convention implementation
//===----------------------------------------------------------------------===//

/// AddLiveIn - This helper function adds the specified physical register to the
/// MachineFunction as a live in value.  It also creates a corresponding virtual
/// register for it.
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
                          TargetRegisterClass *RC) {
  assert(RC->contains(PReg) && "Not the correct regclass!");
  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
  MF.addLiveIn(PReg, VReg);
  return VReg;
}

/// HowToPassCCCArgument - Returns how an formal argument of the specified type
/// should be passed. If it is through stack, returns the size of the stack
Evan Cheng's avatar
Evan Cheng committed
/// slot; if it is through XMM register, returns the number of XMM registers
/// are needed.
static void
HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
                     unsigned &ObjSize, unsigned &ObjXMMRegs) {
Evan Cheng's avatar
Evan Cheng committed
  ObjXMMRegs = 0;
Evan Cheng's avatar
Evan Cheng committed

  switch (ObjectVT) {
  default: assert(0 && "Unhandled argument type!");
  case MVT::i8:  ObjSize = 1; break;
  case MVT::i16: ObjSize = 2; break;
  case MVT::i32: ObjSize = 4; break;
  case MVT::i64: ObjSize = 8; break;
  case MVT::f32: ObjSize = 4; break;
  case MVT::f64: ObjSize = 8; break;
  case MVT::v16i8:
  case MVT::v8i16:
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v4f32:
  case MVT::v2f64:
      ObjXMMRegs = 1;
    else
      ObjSize = 16;
    break;
SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
  unsigned NumArgs = Op.Val->getNumValues() - 1;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  SDOperand Root = Op.getOperand(0);
  std::vector<SDOperand> ArgValues;
  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
  // the stack frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first argument (leftmost lexically)
Evan Cheng's avatar
Evan Cheng committed
  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
  static const unsigned XMMArgRegs[] = {
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
  };
  for (unsigned i = 0; i < NumArgs; ++i) {
    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
    unsigned ArgIncrement = 4;
    unsigned ObjSize = 0;
    unsigned ObjXMMRegs = 0;
    HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
    if (ObjSize > 4)
      ArgIncrement = ObjSize;

    SDOperand ArgValue;
    if (ObjXMMRegs) {
      // Passed in a XMM register.
      unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
      ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
      ArgValues.push_back(ArgValue);
      NumXMMRegs += ObjXMMRegs;
    } else {
      // XMM arguments have to be aligned on 16-byte boundary.
      if (ObjSize == 16)
        ArgOffset = ((ArgOffset + 15) / 16) * 16;
      // Create the frame index object for this incoming parameter...
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
                             DAG.getSrcValue(NULL));
      ArgValues.push_back(ArgValue);
      ArgOffset += ArgIncrement;   // Move on to the next argument...
  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  if (isVarArg)
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
  ReturnAddrIndex = 0;     // No return address slot generated yet.
  BytesToPopOnReturn = 0;  // Callee pops nothing.
  BytesCallerReserves = ArgOffset;
  // If this is a struct return on Darwin/X86, the callee pops the hidden struct
  // pointer.
  if (MF.getFunction()->getCallingConv() == CallingConv::CSRet &&
      Subtarget->isTargetDarwin())
    BytesToPopOnReturn = 4;
  // Return the new list of results.
  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
                                     Op.Val->value_end());
  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());

SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
  SDOperand Chain     = Op.getOperand(0);
  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
  SDOperand Callee    = Op.getOperand(4);
  MVT::ValueType RetVT= Op.Val->getValueType(0);
  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
  // Keep track of the number of XMM regs passed so far.
  unsigned NumXMMRegs = 0;
  static const unsigned XMMArgRegs[] = {
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
  // Count how many bytes are to be pushed on the stack.
  unsigned NumBytes = 0;
  for (unsigned i = 0; i != NumOps; ++i) {
    SDOperand Arg = Op.getOperand(5+2*i);
    switch (Arg.getValueType()) {
    default: assert(0 && "Unexpected ValueType for argument!");
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
    case MVT::f32:
      NumBytes += 4;
      break;
    case MVT::i64:
    case MVT::f64:
      NumBytes += 8;
      break;
    case MVT::v16i8:
    case MVT::v8i16:
    case MVT::v4i32:
    case MVT::v2i64:
    case MVT::v4f32:
Evan Cheng's avatar
Evan Cheng committed
    case MVT::v2f64:
      else {
        // XMM arguments have to be aligned on 16-byte boundary.
        NumBytes = ((NumBytes + 15) / 16) * 16;
  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));

  // Arguments go on the stack in reverse order, as specified by the ABI.
  unsigned ArgOffset = 0;
  NumXMMRegs = 0;
  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
  std::vector<SDOperand> MemOpChains;
  SDOperand StackPtr = DAG.getRegister(X86::ESP, getPointerTy());
  for (unsigned i = 0; i != NumOps; ++i) {
    SDOperand Arg = Op.getOperand(5+2*i);

    switch (Arg.getValueType()) {
    default: assert(0 && "Unexpected ValueType for argument!");
    case MVT::i8:
Evan Cheng's avatar
Evan Cheng committed
    case MVT::i16: {
      // Promote the integer to 32 bits.  If the input type is signed use a
      // sign extend, otherwise use a zero extend.
      unsigned ExtOp =
        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
Evan Cheng's avatar
Evan Cheng committed
    }
    // Fallthrough

    case MVT::i32:
    case MVT::f32: {
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
      ArgOffset += 4;
      break;
    }
    case MVT::i64:
    case MVT::f64: {
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
      ArgOffset += 8;
      break;
    }
    case MVT::v16i8:
    case MVT::v8i16:
    case MVT::v4i32:
    case MVT::v2i64:
    case MVT::v4f32:
Evan Cheng's avatar
Evan Cheng committed
    case MVT::v2f64:
        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
        NumXMMRegs++;
      } else {
        // XMM arguments have to be aligned on 16-byte boundary.
        ArgOffset = ((ArgOffset + 15) / 16) * 16;
        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
        ArgOffset += 16;
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
                        &MemOpChains[0], MemOpChains.size());
  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into registers.
  SDOperand InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
                             InFlag);
  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());

  std::vector<MVT::ValueType> NodeTys;
  NodeTys.push_back(MVT::Other);   // Returns a chain
  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first, 
                                  RegsToPass[i].second.getValueType()));

  if (InFlag.Val)
    Ops.push_back(InFlag);
  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
  // Create the CALLSEQ_END node.
  unsigned NumBytesForCalleeToPush = 0;

  // If this is is a call to a struct-return function on Darwin/X86, the callee
  // pops the hidden struct pointer, so we have to push it back.
  if (CallingConv == CallingConv::CSRet && Subtarget->isTargetDarwin())
    NumBytesForCalleeToPush = 4;
  
  NodeTys.clear();
  NodeTys.push_back(MVT::Other);   // Returns a chain
  if (RetVT != MVT::Other)
    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
  Ops.clear();
  Ops.push_back(Chain);
  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
  Ops.push_back(InFlag);
  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
  if (RetVT != MVT::Other)
    InFlag = Chain.getValue(1);
  std::vector<SDOperand> ResultVals;
  NodeTys.clear();
  switch (RetVT) {
  default: assert(0 && "Unknown value type to return!");
  case MVT::Other: break;
  case MVT::i8:
    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
    ResultVals.push_back(Chain.getValue(0));
    NodeTys.push_back(MVT::i8);
    break;
  case MVT::i16:
    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
    ResultVals.push_back(Chain.getValue(0));
    NodeTys.push_back(MVT::i16);
    break;
  case MVT::i32:
    if (Op.Val->getValueType(1) == MVT::i32) {
      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
      ResultVals.push_back(Chain.getValue(0));
      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
                                 Chain.getValue(2)).getValue(1);
      ResultVals.push_back(Chain.getValue(0));
      NodeTys.push_back(MVT::i32);
    } else {
      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
      ResultVals.push_back(Chain.getValue(0));
    NodeTys.push_back(MVT::i32);
    break;
  case MVT::v16i8:
  case MVT::v8i16:
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v4f32:
  case MVT::v2f64:
    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
    ResultVals.push_back(Chain.getValue(0));
    NodeTys.push_back(RetVT);
    break;
  case MVT::f32:
  case MVT::f64: {
    std::vector<MVT::ValueType> Tys;
    Tys.push_back(MVT::f64);
    Tys.push_back(MVT::Other);
    Tys.push_back(MVT::Flag);
    std::vector<SDOperand> Ops;
    Ops.push_back(Chain);
    Ops.push_back(InFlag);
    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, 
                                   &Ops[0], Ops.size());
    Chain  = RetVal.getValue(1);
    InFlag = RetVal.getValue(2);
    if (X86ScalarSSE) {
      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
      // shouldn't be necessary except that RFP cannot be live across
      // multiple blocks. When stackifier is fixed, they can be uncoupled.
      MachineFunction &MF = DAG.getMachineFunction();
      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
      Tys.clear();
      Tys.push_back(MVT::Other);
      Ops.push_back(Chain);
      Ops.push_back(RetVal);
      Ops.push_back(StackSlot);
      Ops.push_back(DAG.getValueType(RetVT));
      Ops.push_back(InFlag);
      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
      RetVal = DAG.getLoad(RetVT, Chain, StackSlot,
                           DAG.getSrcValue(NULL));

    if (RetVT == MVT::f32 && !X86ScalarSSE)
      // FIXME: we would really like to remember that this FP_ROUND
      // operation is okay to eliminate if we allow excess FP precision.
      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
    ResultVals.push_back(RetVal);
    NodeTys.push_back(RetVT);
    break;
  }
  // If the function returns void, just return the chain.
  if (ResultVals.empty())
    return Chain;
  
  // Otherwise, merge everything together with a MERGE_VALUES node.
  NodeTys.push_back(MVT::Other);
  ResultVals.push_back(Chain);
  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
                              &ResultVals[0], ResultVals.size());
}

//===----------------------------------------------------------------------===//
//                    Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//
// The X86 'fast' calling convention passes up to two integer arguments in
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
// and requires that the callee pop its arguments off the stack (allowing proper
// tail calls), and has the same return value conventions as C calling convs.
//
// This calling convention always arranges for the callee pop value to be 8n+4
// bytes, which is needed for tail recursion elimination and stack alignment
// reasons.
//
// Note that this can be enhanced in the future to pass fp vals in registers
// (when we have a global fp allocator) and do other tricks.
//

/// HowToPassFastCCArgument - Returns how an formal argument of the specified
/// type should be passed. If it is through stack, returns the size of the stack
Evan Cheng's avatar
Evan Cheng committed
/// slot; if it is through integer or XMM register, returns the number of
/// integer or XMM registers are needed.
HowToPassFastCCArgument(MVT::ValueType ObjectVT,
                        unsigned NumIntRegs, unsigned NumXMMRegs,
                        unsigned &ObjSize, unsigned &ObjIntRegs,
                        unsigned &ObjXMMRegs) {
Evan Cheng's avatar
Evan Cheng committed
  ObjIntRegs = 0;
  ObjXMMRegs = 0;

  switch (ObjectVT) {
  default: assert(0 && "Unhandled argument type!");
  case MVT::i8:
    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
      ObjIntRegs = 1;
    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
      ObjIntRegs = 1;
    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
      ObjIntRegs = 1;
    if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
      ObjIntRegs = 2;
    } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
      ObjIntRegs = 1;
      ObjSize = 8;
  case MVT::f32:
    ObjSize = 4;
    break;
  case MVT::f64:
    ObjSize = 8;
    break;
  case MVT::v16i8:
  case MVT::v8i16:
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v4f32:
  case MVT::v2f64:
      ObjXMMRegs = 1;
    else
      ObjSize = 16;
    break;
SDOperand
X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
  unsigned NumArgs = Op.Val->getNumValues()-1;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  SDOperand Root = Op.getOperand(0);
  std::vector<SDOperand> ArgValues;
  // Add DAG nodes to load the arguments...  On entry to a function the stack
  // frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first nonreg argument (leftmost lexically)
Evan Cheng's avatar
Evan Cheng committed
  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot

  // Keep track of the number of integer regs passed so far.  This can be either
  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
  // used).
  unsigned NumIntRegs = 0;
  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.

  static const unsigned XMMArgRegs[] = {
    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
  
  for (unsigned i = 0; i < NumArgs; ++i) {
    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
    unsigned ArgIncrement = 4;
    unsigned ObjSize = 0;
    unsigned ObjIntRegs = 0;
    unsigned ObjXMMRegs = 0;

    HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
                            ObjSize, ObjIntRegs, ObjXMMRegs);
    if (ObjSize > 4)
Evan Cheng's avatar
Evan Cheng committed
    unsigned Reg = 0;
    SDOperand ArgValue;
    if (ObjIntRegs || ObjXMMRegs) {
      switch (ObjectVT) {
      default: assert(0 && "Unhandled argument type!");
      case MVT::i8:
        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
                        X86::GR8RegisterClass);
        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
        break;
      case MVT::i16:
        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
                        X86::GR16RegisterClass);
        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
        break;
      case MVT::i32:
        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
                        X86::GR32RegisterClass);
        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
        break;
      case MVT::i64:
        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
                        X86::GR32RegisterClass);
        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
        if (ObjIntRegs == 2) {
          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
        break;
      case MVT::v16i8:
      case MVT::v8i16:
      case MVT::v4i32:
      case MVT::v2i64:
      case MVT::v4f32:
      case MVT::v2f64:
        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
        break;
      NumIntRegs += ObjIntRegs;
      NumXMMRegs += ObjXMMRegs;
    }
      // XMM arguments have to be aligned on 16-byte boundary.
      if (ObjSize == 16)
        ArgOffset = ((ArgOffset + 15) / 16) * 16;
      // Create the SelectionDAG nodes corresponding to a load from this
      // parameter.
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
      if (ObjectVT == MVT::i64 && ObjIntRegs) {
        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
                                          DAG.getSrcValue(NULL));
        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
      } else
        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
                               DAG.getSrcValue(NULL));
      ArgOffset += ArgIncrement;   // Move on to the next argument.
  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are aligned.
  if ((ArgOffset & 7) == 0)
    ArgOffset += 4;
  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
  ReturnAddrIndex = 0;             // No return address slot generated yet.
  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
  BytesCallerReserves = 0;

  // Finally, inform the code generator which regs we return values in.
  switch (getValueType(MF.getFunction()->getReturnType())) {
  default: assert(0 && "Unknown type!");
  case MVT::isVoid: break;
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    MF.addLiveOut(X86::EAX);
    break;
  case MVT::i64:
    MF.addLiveOut(X86::EAX);
    MF.addLiveOut(X86::EDX);
    break;
  case MVT::f32:
  case MVT::f64:
    MF.addLiveOut(X86::ST0);
    break;
Evan Cheng's avatar
Evan Cheng committed
  case MVT::v16i8:
  case MVT::v8i16:
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v4f32:
  case MVT::v2f64:
  // Return the new list of results.
  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
                                     Op.Val->value_end());
  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG){
  SDOperand Chain     = Op.getOperand(0);
  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
  SDOperand Callee    = Op.getOperand(4);
  MVT::ValueType RetVT= Op.Val->getValueType(0);
  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;

  // Count how many bytes are to be pushed on the stack.
  unsigned NumBytes = 0;