Newer
Older
return false;
}
static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
unsigned NumElems, MVT EVT,
Evan Cheng
committed
SDNode *&Base,
SelectionDAG &DAG, MachineFrameInfo *MFI,
const TargetLowering &TLI) {
Evan Cheng
committed
Base = NULL;
for (unsigned i = 0; i < NumElems; ++i) {
Evan Cheng
committed
if (Idx.getOpcode() == ISD::UNDEF) {
if (!Base)
return false;
continue;
}
Gabor Greif
committed
if (!Elt.getNode() ||
(Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
Evan Cheng
committed
return false;
if (!Base) {
Gabor Greif
committed
Base = Elt.getNode();
Evan Cheng
committed
if (Base->getOpcode() == ISD::UNDEF)
return false;
Evan Cheng
committed
continue;
}
if (Elt.getOpcode() == ISD::UNDEF)
continue;
Gabor Greif
committed
if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
EVT.getSizeInBits()/8, i, MFI))
Evan Cheng
committed
return false;
}
return true;
}
/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
/// if the load addresses are consecutive, non-overlapping, and in the right
/// order.
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
Evan Cheng
committed
const TargetLowering &TLI) {
Evan Cheng
committed
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
DebugLoc dl = N->getDebugLoc();
MVT VT = N->getValueType(0);
MVT EVT = VT.getVectorElementType();
unsigned NumElems = PermMask.getNumOperands();
SDNode *Base = NULL;
Evan Cheng
committed
if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
DAG, MFI, TLI))
LoadSDNode *LD = cast<LoadSDNode>(Base);
Gabor Greif
committed
if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->isVolatile());
return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->isVolatile(), LD->getAlignment());
}
/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget,
const TargetLowering &TLI) {
unsigned NumOps = N->getNumOperands();
DebugLoc dl = N->getDebugLoc();
// Ignore single operand BUILD_VECTOR.
if (NumOps == 1)
MVT VT = N->getValueType(0);
MVT EVT = VT.getVectorElementType();
if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
// We are looking for load i64 and zero extend. We want to transform
// it before legalizer has a chance to expand it. Also look for i64
// BUILD_PAIR bit casted to f64.
// This must be an insertion into a zero vector.
if (!isZeroNode(HighElt))
// Value must be a load.
Gabor Greif
committed
SDNode *Base = N->getOperand(0).getNode();
if (!isa<LoadSDNode>(Base)) {
if (Base->getOpcode() != ISD::BIT_CONVERT)
Gabor Greif
committed
Base = Base->getOperand(0).getNode();
if (!isa<LoadSDNode>(Base))
}
// Transform it into VZEXT_LOAD addr.
LoadSDNode *LD = cast<LoadSDNode>(Base);
Nate Begeman
committed
// Load must not be an extload.
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
// Load type should legal type so we don't have to legalize it.
if (!TLI.isTypeLegal(VT))
return SDValue();
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
TargetLowering::TargetLoweringOpt TLO(DAG);
TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
DCI.CommitTargetLoweringOpt(TLO);
/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
DebugLoc DL = N->getDebugLoc();
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
// If we have SSE[12] support, try to form min/max nodes.
if (Subtarget->hasSSE2() &&
(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
Cond.getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
switch (CC) {
default: break;
case ISD::SETOLE: // (X <= Y) ? X : Y -> min
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
case ISD::SETLT:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGT: // (X > Y) ? X : Y -> max
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
} else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
switch (CC) {
default: break;
case ISD::SETOGT: // (X > Y) ? Y : X -> min
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE: // (X <= Y) ? Y : X -> max
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
case ISD::SETLT:
Opcode = X86ISD::FMAX;
break;
}
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
/// when possible.
static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
// On X86 with SSE2 support, we can transform this to a vector shift if
// all elements are shifted by the same amount. We can't do this in legalize
// because the a constant vector is typically transformed to a constant pool
// so we have no knowledge of the shift amount.
if (!Subtarget->hasSSE2())
return SDValue();
MVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
return SDValue();
SDValue ShAmtOp = N->getOperand(1);
MVT EltVT = VT.getVectorElementType();
DebugLoc DL = N->getDebugLoc();
if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
unsigned NumElts = VT.getVectorNumElements();
unsigned i = 0;
for (; i != NumElts; ++i) {
SDValue Arg = ShAmtOp.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
BaseShAmt = Arg;
break;
for (; i != NumElts; ++i) {
SDValue Arg = ShAmtOp.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
if (Arg != BaseShAmt) {
return SDValue();
}
}
} else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
isSplatMask(ShAmtOp.getOperand(2).getNode())) {
BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
DAG.getIntPtrConstant(0));
} else
return SDValue();
BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
// The shift amount is identical so we can do a vector shift.
SDValue ValOp = N->getOperand(0);
switch (N->getOpcode()) {
default:
assert(0 && "Unknown shift opcode!");
break;
case ISD::SHL:
if (VT == MVT::v2i64)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
ValOp, BaseShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
ValOp, BaseShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
ValOp, BaseShAmt);
break;
case ISD::SRA:
if (VT == MVT::v4i32)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
ValOp, BaseShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
ValOp, BaseShAmt);
break;
case ISD::SRL:
if (VT == MVT::v2i64)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
ValOp, BaseShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
ValOp, BaseShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
ValOp, BaseShAmt);
}
return SDValue();
}
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
Evan Cheng
committed
StoreSDNode *St = cast<StoreSDNode>(N);
if (St->getValue().getValueType().isVector() &&
St->getValue().getValueType().getSizeInBits() == 64 &&
isa<LoadSDNode>(St->getValue()) &&
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
St->getChain().hasOneUse() && !St->isVolatile()) {
Gabor Greif
committed
SDNode* LdVal = St->getValue().getNode();
LoadSDNode *Ld = 0;
int TokenFactorIndex = -1;
Gabor Greif
committed
SDNode* ChainVal = St->getChain().getNode();
// Must be a store of a load. We currently handle two cases: the load
// is a direct child, and it's under an intervening TokenFactor. It is
// possible to dig deeper under nested TokenFactors.
Ld = cast<LoadSDNode>(St->getChain());
else if (St->getValue().hasOneUse() &&
ChainVal->getOpcode() == ISD::TokenFactor) {
for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
Gabor Greif
committed
if (ChainVal->getOperand(i).getNode() == LdVal) {
TokenFactorIndex = i;
Ld = cast<LoadSDNode>(St->getValue());
} else
Ops.push_back(ChainVal->getOperand(i));
}
}
if (Ld) {
DebugLoc DL = N->getDebugLoc();
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
if (Subtarget->is64Bit()) {
SDValue NewLd = DAG.getLoad(MVT::i64, DL, Ld->getChain(),
Ld->getBasePtr(), Ld->getSrcValue(),
Ld->getSrcValueOffset(), Ld->isVolatile(),
Ld->getAlignment());
if (TokenFactorIndex != -1) {
Ops.push_back(NewChain);
NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Ops[0],
Ops.size());
}
return DAG.getStore(NewChain, DL, NewLd, St->getBasePtr(),
St->getSrcValue(), St->getSrcValueOffset(),
St->isVolatile(), St->getAlignment());
}
// Otherwise, lower to two 32-bit copies.
SDValue HiAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoLd = DAG.getLoad(MVT::i32, DL, Ld->getChain(), LoAddr,
Ld->getSrcValue(), Ld->getSrcValueOffset(),
Ld->isVolatile(), Ld->getAlignment());
SDValue HiLd = DAG.getLoad(MVT::i32, DL, Ld->getChain(), HiAddr,
Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
Ld->isVolatile(),
MinAlign(Ld->getAlignment(), 4));
if (TokenFactorIndex != -1) {
Ops.push_back(LoLd);
Ops.push_back(HiLd);
NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Ops[0],
Ops.size());
}
LoAddr = St->getBasePtr();
HiAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoSt = DAG.getStore(NewChain, DL, LoLd, LoAddr,
St->getSrcValue(), St->getSrcValueOffset(),
St->isVolatile(), St->getAlignment());
SDValue HiSt = DAG.getStore(NewChain, DL, HiLd, HiAddr,
St->getSrcValue(),
St->getSrcValueOffset() + 4,
St->isVolatile(),
MinAlign(St->getAlignment(), 4));
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, LoSt, HiSt);
}
}
/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
/// X86ISD::FXOR nodes.
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
// F[X]OR(x, 0.0) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
}
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
// FAND(0.0, x) -> 0.0
// FAND(x, 0.0) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
}
static SDValue PerformBTCombine(SDNode *N,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// BT ignores high bits in the bit index operand.
SDValue Op1 = N->getOperand(1);
if (Op1.hasOneUse()) {
unsigned BitWidth = Op1.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG);
TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
return SDValue();
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
Evan Cheng
committed
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
case ISD::BUILD_VECTOR:
return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
Evan Cheng
committed
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
case X86ISD::FOR: return PerformFORCombine(N, DAG);
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
}
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'A':
return C_Register;
case 'r':
case 'R':
case 'l':
case 'q':
case 'Q':
case 'x':
case 'Y':
return C_RegisterClass;
case 'e':
case 'Z':
return C_Other;
default:
break;
}
return TargetLowering::getConstraintType(Constraint);
}
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
LowerXConstraint(MVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
return "Y";
if (Subtarget->hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
char Constraint,
Evan Cheng
committed
bool hasMemory,
switch (Constraint) {
default: break;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
return;
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
const ConstantInt *CI = C->getConstantIntValue();
if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
break;
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
}
return;
}
case 'Z': {
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
const ConstantInt *CI = C->getConstantIntValue();
if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
return;
}
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
break;
}
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
int64_t Offset = 0;
// Match either (GA) or (GA+C)
if (GA) {
Offset = GA->getOffset();
} else if (Op.getOpcode() == ISD::ADD) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (C && GA) {
Offset = GA->getOffset()+C->getZExtValue();
} else {
C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (C && GA)
Offset = GA->getOffset()+C->getZExtValue();
if (hasMemory)
Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
Evan Cheng
committed
else
Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
Offset);
Result = Op;
break;
}
// Otherwise, not valid for this mode.
return;
}
Gabor Greif
committed
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
Evan Cheng
committed
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
Ops, DAG);
}
getRegClassForInlineAsmConstraint(const std::string &Constraint,
if (Constraint.size() == 1) {
// FIXME: not handling fp-stack yet!
switch (Constraint[0]) { // GCC X86 Constraint Letters
default: break; // Unknown constraint letter
case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
case 'Q': // Q_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
else if (VT == MVT::i16)
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
else if (VT == MVT::i8)
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
else if (VT == MVT::i64)
return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
break;
return std::vector<unsigned>();
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
case 'R': // LEGACY_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8)
return std::make_pair(0U, X86::GR8RegisterClass);
if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16RegisterClass);
if (VT == MVT::i32 || !Subtarget->is64Bit())
return std::make_pair(0U, X86::GR32RegisterClass);
return std::make_pair(0U, X86::GR64RegisterClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP32RegisterClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP64RegisterClass);
return std::make_pair(0U, X86::RFP80RegisterClass);
Chris Lattner
committed
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget->hasMMX()) break;
return std::make_pair(0U, X86::VR64RegisterClass);
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget->hasSSE2()) break;
// FALL THROUGH.
case 'x': // SSE_REGS if SSE1 allowed
if (!Subtarget->hasSSE1()) break;
switch (VT.getSimpleVT()) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
return std::make_pair(0U, X86::FR32RegisterClass);
case MVT::f64:
case MVT::i64:
return std::make_pair(0U, X86::FR64RegisterClass);
// Vector types.
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
return std::make_pair(0U, X86::VR128RegisterClass);
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
// Not found as a standard register?
if (Res.second == 0) {
// GCC calls "st(0)" just plain "st".
if (StringsEqualNoCase("{st}", Constraint)) {
Res.first = X86::ST0;
Chris Lattner
committed
Res.second = X86::RFP80RegisterClass;
// 'A' means EAX + EDX.
if (Constraint == "A") {
Res.first = X86::EAX;
Res.second = X86::GRADRegisterClass;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
if (Res.second->hasType(VT))
return Res; // Correct type already, nothing to do.
// All of the single-register GCC register classes map their values onto
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
// really want an 8-bit or 32-bit register, map to the appropriate register
// class and return the appropriate register.
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
if (Res.second == X86::GR16RegisterClass) {
if (VT == MVT::i8) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::AL; break;
case X86::DX: DestReg = X86::DL; break;
case X86::CX: DestReg = X86::CL; break;
case X86::BX: DestReg = X86::BL; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR8RegisterClass;
}
} else if (VT == MVT::i32) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::EAX; break;
case X86::DX: DestReg = X86::EDX; break;
case X86::CX: DestReg = X86::ECX; break;
case X86::BX: DestReg = X86::EBX; break;
case X86::SI: DestReg = X86::ESI; break;
case X86::DI: DestReg = X86::EDI; break;
case X86::BP: DestReg = X86::EBP; break;
case X86::SP: DestReg = X86::ESP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR32RegisterClass;
}
} else if (VT == MVT::i64) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::RAX; break;
case X86::DX: DestReg = X86::RDX; break;
case X86::CX: DestReg = X86::RCX; break;
case X86::BX: DestReg = X86::RBX; break;
case X86::SI: DestReg = X86::RSI; break;
case X86::DI: DestReg = X86::RDI; break;
case X86::BP: DestReg = X86::RBP; break;
case X86::SP: DestReg = X86::RSP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR64RegisterClass;
}
} else if (Res.second == X86::FR32RegisterClass ||
Res.second == X86::FR64RegisterClass ||
Res.second == X86::VR128RegisterClass) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
if (VT == MVT::f32)
Res.second = X86::FR32RegisterClass;
else if (VT == MVT::f64)
Res.second = X86::FR64RegisterClass;
else if (X86::VR128RegisterClass->hasType(VT))
Res.second = X86::VR128RegisterClass;
return Res;
}
//===----------------------------------------------------------------------===//
// X86 Widen vector type
//===----------------------------------------------------------------------===//
/// getWidenVectorType: given a vector type, returns the type to widen
/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
/// If there is no vector type that we want to widen to, returns MVT::Other
/// When and where to widen is target dependent based on the cost of
/// scalarizing vs using the wider vector type.
MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
assert(VT.isVector());
if (isTypeLegal(VT))
return VT;
// TODO: In computeRegisterProperty, we can compute the list of legal vector
// type based on element type. This would speed up our search (though
// it may not be worth it since the size of the list is relatively
// small).
MVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
// On X86, it make sense to widen any vector wider than 1
if (NElts <= 1)
return MVT::Other;
for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType)nVT;
if (isTypeLegal(SVT) &&
SVT.getVectorElementType() == EltVT &&
SVT.getVectorNumElements() > NElts)
return SVT;
}
return MVT::Other;
}