Skip to content
LoopStrengthReduce.cpp 73.7 KiB
Newer Older
    TargetLowering::AddrMode AM;
    if (SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.HasBaseReg = HasBaseReg || !isZero(UsersToProcess[i].Base);
    AM.Scale = Scale;

    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
/// RequiresTypeConversion - Returns true if converting Ty to NewTy is not
/// a nop.
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
                                                const Type *Ty2) {
  if (Ty1 == Ty2)
  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
    return false;
  return (!Ty1->canLosslesslyBitCastTo(Ty2) &&
          !(isa<PointerType>(Ty2) &&
            Ty1->canLosslesslyBitCastTo(UIntPtrTy)) &&
          !(isa<PointerType>(Ty1) &&
            Ty2->canLosslesslyBitCastTo(UIntPtrTy)));
/// CheckForIVReuse - Returns the multiple if the stride is the multiple
/// of a previous stride and it is a legal value for the target addressing
/// mode scale component and optional base reg. This allows the users of
/// this stride to be rewritten as prev iv * factor. It returns 0 if no
/// reuse is possible.
unsigned LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
                                const SCEVHandle &Stride, 
                                IVExpr &IV, const Type *Ty,
                                const std::vector<BasedUser>& UsersToProcess) {
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
    int64_t SInt = SC->getValue()->getSExtValue();
    for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
         ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(StrideOrder[NewStride]);
      if (SI == IVsByStride.end()) 
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
          (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
      int64_t Scale = SInt / SSInt;
      // Check that this stride is valid for all the types used for loads and
      // stores; if it can be used for some and not others, we might as well use
      // the original stride everywhere, since we have to create the IV for it
      // anyway. If the scale is 1, then we don't need to worry about folding
      // multiplications.
      if (Scale == 1 ||
          (AllUsesAreAddresses &&
           ValidStride(HasBaseReg, Scale, UsersToProcess)))
        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
               IE = SI->second.IVs.end(); II != IE; ++II)
          // FIXME: Only handle base == 0 for now.
          // Only reuse previous IV if it would not require a type conversion.
              !RequiresTypeConversion(II->Base->getType(), Ty)) {
  return 0;
Chris Lattner's avatar
 
Chris Lattner committed
/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
/// returns true if Val's isUseOfPostIncrementedValue is true.
static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
  return Val.isUseOfPostIncrementedValue;
}
/// isNonConstantNegative - REturn true if the specified scev is negated, but
/// not a constant.
static bool isNonConstantNegative(const SCEVHandle &Expr) {
  SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
  if (!Mul) return false;
  
  // If there is a constant factor, it will be first.
  SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
  if (!SC) return false;
  
  // Return true if the value is negative, this matches things like (-42 * V).
  return SC->getValue()->getValue().isNegative();
}

/// isAddress - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
  bool isAddress = isa<LoadInst>(Inst);
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    if (SI->getOperand(1) == OperandVal)
      isAddress = true;
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::prefetch:
      case Intrinsic::x86_sse2_loadu_dq:
      case Intrinsic::x86_sse2_loadu_pd:
      case Intrinsic::x86_sse_loadu_ps:
      case Intrinsic::x86_sse_storeu_ps:
      case Intrinsic::x86_sse2_storeu_pd:
      case Intrinsic::x86_sse2_storeu_dq:
      case Intrinsic::x86_sse2_storel_dq:
        if (II->getOperand(1) == OperandVal)
          isAddress = true;
        break;
      case Intrinsic::x86_sse2_loadh_pd:
      case Intrinsic::x86_sse2_loadl_pd:
        if (II->getOperand(2) == OperandVal)
          isAddress = true;
        break;
    }
  }
  return isAddress;
}

// CollectIVUsers - Transform our list of users and offsets to a bit more
// complex table. In this new vector, each 'BasedUser' contains 'Base' the base
// of the strided accessas well as the old information from Uses. We
// progressively move information from the Base field to the Imm field, until
// we eventually have the full access expression to rewrite the use.
SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
                                              IVUsersOfOneStride &Uses,
                                              Loop *L,
                                              bool &AllUsesAreAddresses,
                                       std::vector<BasedUser> &UsersToProcess) {
  UsersToProcess.reserve(Uses.Users.size());
  for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
    UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
    
    // Move any loop invariant operands from the offset field to the immediate
    // field of the use, so that we don't try to use something before it is
    // computed.
    MoveLoopVariantsToImediateField(UsersToProcess.back().Base,
                                    UsersToProcess.back().Imm, L, SE);
    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
  // We now have a whole bunch of uses of like-strided induction variables, but
  // they might all have different bases.  We want to emit one PHI node for this
  // stride which we fold as many common expressions (between the IVs) into as
  // possible.  Start by identifying the common expressions in the base values 
  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
  // "A+B"), emit it to the preheader, then remove the expression from the
  // UsersToProcess base values.
  SCEVHandle CommonExprs =
    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE);
  // Next, figure out what we can represent in the immediate fields of
  // instructions.  If we can represent anything there, move it to the imm
  // fields of the BasedUsers.  We do this so that it increases the commonality
  // of the remaining uses.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // If the user is not in the current loop, this means it is using the exit
    // value of the IV.  Do not put anything in the base, make sure it's all in
    // the immediate field to allow as much factoring as possible.
    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
                                             UsersToProcess[i].Base);
        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
    } else {
      
      // Addressing modes can be folded into loads and stores.  Be careful that
      // the store is through the expression, not of the expression though.
      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
                                    UsersToProcess[i].OperandValToReplace);
      if (isa<PHINode>(UsersToProcess[i].Inst)) {

      // If this use isn't an address, then not all uses are addresses.
      if (!isAddress && !(AllowPHIIVReuse && isPHI))
        AllUsesAreAddresses = false;
      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
                          UsersToProcess[i].Imm, isAddress, L, SE);
  // If one of the use if a PHI node and all other uses are addresses, still
  // allow iv reuse. Essentially we are trading one constant multiplication
  // for one fewer iv.
  if (NumPHI > 1)
    AllUsesAreAddresses = false;

  return CommonExprs;
}

/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV.  All of the users may have different starting values, and this
/// may not be the only stride (we know it is if isOnlyStride is true).
void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
                                                      IVUsersOfOneStride &Uses,
                                                      Loop *L,
                                                      bool isOnlyStride) {
  // If all the users are moved to another stride, then there is nothing to do.
  if (Uses.Users.size() == 0)
    return;

  // Keep track if every use in UsersToProcess is an address. If they all are,
  // we may be able to rewrite the entire collection of them in terms of a
  // smaller-stride IV.
  bool AllUsesAreAddresses = true;

  // Transform our list of users and offsets to a bit more complex table.  In
  // this new vector, each 'BasedUser' contains 'Base' the base of the
  // strided accessas well as the old information from Uses.  We progressively
  // move information from the Base field to the Imm field, until we eventually
  // have the full access expression to rewrite the use.
  std::vector<BasedUser> UsersToProcess;
  SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
                                          UsersToProcess);

  // If we managed to find some expressions in common, we'll need to carry
  // their value in a register and add it in for each use. This will take up
  // a register operand, which potentially restricts what stride values are
  // valid.
  bool HaveCommonExprs = !isZero(CommonExprs);
  
  // If all uses are addresses, check if it is possible to reuse an IV with a
  // stride that is a factor of this stride. And that the multiple is a number
  // that can be encoded in the scale field of the target addressing mode. And
  // that we will have a valid instruction after this substition, including the
  // immediate field, if any.
  PHINode *NewPHI = NULL;
  Value   *IncV   = NULL;
  IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
                   SE->getIntegerSCEV(0, Type::Int32Ty),
                   0, 0);
  unsigned RewriteFactor = 0;
  RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
                                  Stride, ReuseIV, CommonExprs->getType(),
                                  UsersToProcess);
  if (RewriteFactor != 0) {
    DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
         << " and BASE " << *ReuseIV.Base << " :\n";
    NewPHI = ReuseIV.PHI;
    IncV   = ReuseIV.IncV;
  }

  const Type *ReplacedTy = CommonExprs->getType();
  
  // Now that we know what we need to do, insert the PHI node itself.
  //
  DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE "
       << *Stride << " and BASE " << *CommonExprs << ": ";
  SCEVExpander Rewriter(*SE, *LI);
  SCEVExpander PreheaderRewriter(*SE, *LI);
  
  BasicBlock  *Preheader = L->getLoopPreheader();
  Instruction *PreInsertPt = Preheader->getTerminator();
  Instruction *PhiInsertBefore = L->getHeader()->begin();
  
  BasicBlock *LatchBlock = L->getLoopLatch();

  // Emit the initial base value into the loop preheader.
  Value *CommonBaseV
    = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt);
  if (RewriteFactor == 0) {
    // Create a new Phi for this base, and stick it in the loop header.
    NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
    ++NumInserted;
    // Add common base to the new Phi node.
    NewPHI->addIncoming(CommonBaseV, Preheader);

    // If the stride is negative, insert a sub instead of an add for the
    // increment.
    bool isNegative = isNonConstantNegative(Stride);
    SCEVHandle IncAmount = Stride;
    if (isNegative)
      IncAmount = SE->getNegativeSCEV(Stride);
    // Insert the stride into the preheader.
    Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt);
    if (!isa<ConstantInt>(StrideV)) ++NumVariable;
    // Emit the increment of the base value before the terminator of the loop
    // latch block, and add it to the Phi node.
    SCEVHandle IncExp = SE->getUnknown(StrideV);
      IncExp = SE->getNegativeSCEV(IncExp);
    IncExp = SE->getAddExpr(SE->getUnknown(NewPHI), IncExp);
    IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator());
    IncV->setName(NewPHI->getName()+".inc");
    NewPHI->addIncoming(IncV, LatchBlock);

    // Remember this in case a later stride is multiple of this.
    IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
    
    DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr();
  } else {
    Constant *C = dyn_cast<Constant>(CommonBaseV);
    if (!C ||
        (!C->isNullValue() &&
         !isTargetConstant(SE->getUnknown(CommonBaseV), ReplacedTy, TLI)))
Reid Spencer's avatar
Reid Spencer committed
      // We want the common base emitted into the preheader! This is just
      // using cast as a copy so BitCast (no-op cast) is appropriate
      CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), 
                                    "commonbase", PreInsertPt);
Chris Lattner's avatar
 
Chris Lattner committed
  // We want to emit code for users inside the loop first.  To do this, we
  // rearrange BasedUser so that the entries at the end have
  // isUseOfPostIncrementedValue = false, because we pop off the end of the
  // vector (so we handle them first).
  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
                 PartitionByIsUseOfPostIncrementedValue);
  
  // Sort this by base, so that things with the same base are handled
  // together.  By partitioning first and stable-sorting later, we are
  // guaranteed that within each base we will pop off users from within the
  // loop before users outside of the loop with a particular base.
  //
  // We would like to use stable_sort here, but we can't.  The problem is that
  // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
  // we don't have anything to do a '<' comparison on.  Because we think the
  // number of uses is small, do a horrible bubble sort which just relies on
  // ==.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // Get a base value.
    SCEVHandle Base = UsersToProcess[i].Base;
    
    // Compact everything with this base to be consequtive with this one.
Chris Lattner's avatar
 
Chris Lattner committed
    for (unsigned j = i+1; j != e; ++j) {
      if (UsersToProcess[j].Base == Base) {
        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
        ++i;
      }
    }
  }

  // Process all the users now.  This outer loop handles all bases, the inner
  // loop handles all users of a particular base.
    SCEVHandle Base = UsersToProcess.back().Base;
    // Emit the code for Base into the preheader.
    Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt);

    DOUT << "  INSERTING code for BASE = " << *Base << ":";
    if (BaseV->hasName())
      DOUT << " Result value name = %" << BaseV->getNameStr();
    DOUT << "\n";

    // If BaseV is a constant other than 0, make sure that it gets inserted into
    // the preheader, instead of being forward substituted into the uses.  We do
Reid Spencer's avatar
Reid Spencer committed
    // this by forcing a BitCast (noop cast) to be inserted into the preheader 
    // in this case.
Chris Lattner's avatar
 
Chris Lattner committed
    if (Constant *C = dyn_cast<Constant>(BaseV)) {
      if (!C->isNullValue() && !isTargetConstant(Base, ReplacedTy, TLI)) {
Reid Spencer's avatar
Reid Spencer committed
        // We want this constant emitted into the preheader! This is just
        // using cast as a copy so BitCast (no-op cast) is appropriate
        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
Chris Lattner's avatar
 
Chris Lattner committed
    }

    // Emit the code to add the immediate offset to the Phi value, just before
    // the instructions that we identified as using this stride and base.
Chris Lattner's avatar
 
Chris Lattner committed
      // FIXME: Use emitted users to emit other users.
      BasedUser &User = UsersToProcess.back();
      // If this instruction wants to use the post-incremented value, move it
      // after the post-inc and use its value instead of the PHI.
      Value *RewriteOp = NewPHI;
      if (User.isUseOfPostIncrementedValue) {
        RewriteOp = IncV;
Chris Lattner's avatar
Chris Lattner committed

        // If this user is in the loop, make sure it is the last thing in the
        // loop to ensure it is dominated by the increment.
        if (L->contains(User.Inst->getParent()))
          User.Inst->moveBefore(LatchBlock->getTerminator());
      if (RewriteOp->getType() != ReplacedTy) {
        Instruction::CastOps opcode = Instruction::Trunc;
        if (ReplacedTy->getPrimitiveSizeInBits() ==
            RewriteOp->getType()->getPrimitiveSizeInBits())
          opcode = Instruction::BitCast;
        RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy);
      }
      SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);

      // Clear the SCEVExpander's expression map so that we are guaranteed
      // to have the code emitted where we expect it.
      Rewriter.clear();

      // If we are reusing the iv, then it must be multiplied by a constant
      // factor take advantage of addressing mode scale component.
      if (RewriteFactor != 0) {
        RewriteExpr = SE->getMulExpr(SE->getIntegerSCEV(RewriteFactor,
                                                        RewriteExpr->getType()),
                                     RewriteExpr);

        // The common base is emitted in the loop preheader. But since we
        // are reusing an IV, it has not been used to initialize the PHI node.
        // Add it to the expression used to rewrite the uses.
        if (!isa<ConstantInt>(CommonBaseV) ||
            !cast<ConstantInt>(CommonBaseV)->isZero())
          RewriteExpr = SE->getAddExpr(RewriteExpr,
                                      SE->getUnknown(CommonBaseV));
      // Now that we know what we need to do, insert code before User for the
      // immediate and any loop-variant expressions.
      if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isZero())
        // Add BaseV to the PHI value if needed.
        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
      User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this,
                                          DeadInsts);

      // Mark old value we replaced as possibly dead, so that it is elminated
      // if we just replaced the last use of that value.
      DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
      ++NumReduced;
Chris Lattner's avatar
 
Chris Lattner committed
      // If there are any more users to process with the same base, process them
      // now.  We sorted by base above, so we just have to check the last elt.
    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
    // TODO: Next, find out which base index is the most common, pull it out.
  }

  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
  // different starting values, into different PHIs.
/// FindIVForUser - If Cond has an operand that is an expression of an IV,
/// set the IV user and stride information and return true, otherwise return
/// false.
bool LoopStrengthReduce::FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse,
                                       const SCEVHandle *&CondStride) {
  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
       ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
    IVUsesByStride.find(StrideOrder[Stride]);
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
    
    for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
         E = SI->second.Users.end(); UI != E; ++UI)
      if (UI->User == Cond) {
        // NOTE: we could handle setcc instructions with multiple uses here, but
        // InstCombine does it as well for simple uses, it's not clear that it
        // occurs enough in real life to handle.
        CondUse = &*UI;
        CondStride = &SI->first;
        return true;
      }
  }
  return false;
}    

namespace {
  // Constant strides come first which in turns are sorted by their absolute
  // values. If absolute values are the same, then positive strides comes first.
  // e.g.
  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
  struct StrideCompare {
    bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
      SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
      SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
      if (LHSC && RHSC) {
        int64_t  LV = LHSC->getValue()->getSExtValue();
        int64_t  RV = RHSC->getValue()->getSExtValue();
        uint64_t ALV = (LV < 0) ? -LV : LV;
        uint64_t ARV = (RV < 0) ? -RV : RV;
        if (ALV == ARV)
          return LV > RV;
        else
          return ALV < ARV;
      }
      return (LHSC && !RHSC);
    }
  };
}

/// ChangeCompareStride - If a loop termination compare instruction is the
/// only use of its stride, and the compaison is against a constant value,
/// try eliminate the stride by moving the compare instruction to another
/// stride and change its constant operand accordingly. e.g.
///
/// loop:
/// ...
/// v1 = v1 + 3
/// v2 = v2 + 1
/// if (v2 < 10) goto loop
/// =>
/// loop:
/// ...
/// v1 = v1 + 3
/// if (v1 < 30) goto loop
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                                const SCEVHandle* &CondStride) {
  if (StrideOrder.size() < 2 ||
      IVUsesByStride[*CondStride].Users.size() != 1)
    return Cond;
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
  if (!SC) return Cond;
  ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1));
  if (!C) return Cond;

  ICmpInst::Predicate Predicate = Cond->getPredicate();
  int64_t CmpSSInt = SC->getValue()->getSExtValue();
  int64_t CmpVal = C->getValue().getSExtValue();
Evan Cheng's avatar
Evan Cheng committed
  unsigned BitWidth = C->getValue().getBitWidth();
  uint64_t SignBit = 1ULL << (BitWidth-1);
  const Type *CmpTy = C->getType();
  const Type *NewCmpTy = NULL;
Evan Cheng's avatar
Evan Cheng committed
  unsigned TyBits = CmpTy->getPrimitiveSizeInBits();
  unsigned NewTyBits = 0;
  int64_t NewCmpVal = CmpVal;
  SCEVHandle *NewStride = NULL;
  Value *NewIncV = NULL;
  int64_t Scale = 1;

  // Look for a suitable stride / iv as replacement.
  std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
  for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
      IVUsesByStride.find(StrideOrder[i]);
    if (!isa<SCEVConstant>(SI->first))
      continue;
    int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
Evan Cheng's avatar
Evan Cheng committed
    if (abs(SSInt) <= abs(CmpSSInt) || (SSInt % CmpSSInt) != 0)
Evan Cheng's avatar
Evan Cheng committed
    Scale = SSInt / CmpSSInt;
    NewCmpVal = CmpVal * Scale;
    APInt Mul = APInt(BitWidth, NewCmpVal);
    // Check for overflow.
    if (Mul.getSExtValue() != NewCmpVal) {
      NewCmpVal = CmpVal;
      continue;
    }

Evan Cheng's avatar
Evan Cheng committed
    if (ICmpInst::isSignedPredicate(Predicate) &&
        (CmpVal & SignBit) != (NewCmpVal & SignBit))
    if (NewCmpVal != CmpVal) {
      // Pick the best iv to use trying to avoid a cast.
      NewIncV = NULL;
      for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
             E = SI->second.Users.end(); UI != E; ++UI) {
        NewIncV = UI->OperandValToReplace;
        if (NewIncV->getType() == CmpTy)
          break;
      }
      if (!NewIncV) {
        NewCmpVal = CmpVal;
        continue;
      }

      NewCmpTy = NewIncV->getType();
Evan Cheng's avatar
Evan Cheng committed
      NewTyBits = isa<PointerType>(NewCmpTy)
        ? UIntPtrTy->getPrimitiveSizeInBits()
        : NewCmpTy->getPrimitiveSizeInBits();
      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
        // Check if it is possible to rewrite it using a iv / stride of a smaller
        // integer type.
        bool TruncOk = false;
        if (NewCmpTy->isInteger()) {
          unsigned Bits = NewTyBits;
          if (ICmpInst::isSignedPredicate(Predicate))
            --Bits;
          uint64_t Mask = (1ULL << Bits) - 1;
          if (((uint64_t)NewCmpVal & Mask) == (uint64_t)NewCmpVal)
            TruncOk = true;
        }
        if (!TruncOk) {
          NewCmpVal = CmpVal;
          continue;
        }
      }

      // Don't rewrite if use offset is non-constant and the new type is
      // of a different type.
      // FIXME: too conservative?
      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset)) {
        NewCmpVal = CmpVal;
        continue;
      }

      bool AllUsesAreAddresses = true;
      std::vector<BasedUser> UsersToProcess;
      SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
                                              AllUsesAreAddresses,
                                              UsersToProcess);
      // Avoid rewriting the compare instruction with an iv of new stride
      // if it's likely the new stride uses will be rewritten using the
      if (AllUsesAreAddresses &&
          ValidStride(!isZero(CommonExprs), Scale, UsersToProcess)) {        
        NewCmpVal = CmpVal;
        continue;
      }

      // If scale is negative, use inverse predicate unless it's testing
      // for equality.
      if (Scale < 0 && !Cond->isEquality())
        Predicate = ICmpInst::getInversePredicate(Predicate);

      NewStride = &StrideOrder[i];
      break;
    }
  }

  if (NewCmpVal != CmpVal) {
    // Create a new compare instruction using new stride / iv.
    ICmpInst *OldCond = Cond;
Evan Cheng's avatar
Evan Cheng committed
    Value *RHS;
    if (!isa<PointerType>(NewCmpTy))
      RHS = ConstantInt::get(NewCmpTy, NewCmpVal);
    else {
      RHS = ConstantInt::get(UIntPtrTy, NewCmpVal);
      RHS = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, RHS, NewCmpTy);
Evan Cheng's avatar
Evan Cheng committed
    // Insert new compare instruction.
    Cond = new ICmpInst(Predicate, NewIncV, RHS);
    Cond->setName(L->getHeader()->getName() + ".termcond");
    OldCond->getParent()->getInstList().insert(OldCond, Cond);
Evan Cheng's avatar
Evan Cheng committed

    // Remove the old compare instruction. The old indvar is probably dead too.
    DeadInsts.insert(cast<Instruction>(CondUse->OperandValToReplace));
    OldCond->replaceAllUsesWith(Cond);
Evan Cheng's avatar
Evan Cheng committed
    SE->deleteValueFromRecords(OldCond);
    IVUsesByStride[*CondStride].Users.pop_back();
Evan Cheng's avatar
Evan Cheng committed
    SCEVHandle NewOffset = TyBits == NewTyBits
      ? SE->getMulExpr(CondUse->Offset,
                       SE->getConstant(ConstantInt::get(CmpTy, Scale)))
      : SE->getConstant(ConstantInt::get(NewCmpTy,
        cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
    IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewIncV);
    CondUse = &IVUsesByStride[*NewStride].Users.back();
    CondStride = NewStride;
    ++NumEliminated;
  }

  return Cond;
}

// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
// uses in the loop, look to see if we can eliminate some, in favor of using
// common indvars for the different uses.
void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
  // TODO: implement optzns here.

  // Finally, get the terminating condition for the loop if possible.  If we
  // can, we want to change it to use a post-incremented version of its
Chris Lattner's avatar
Chris Lattner committed
  // induction variable, to allow coalescing the live ranges for the IV into
  // one register value.
  PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
  BasicBlock  *Preheader = L->getLoopPreheader();
  BasicBlock *LatchBlock =
   SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
  BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
Reid Spencer's avatar
Reid Spencer committed
  if (!TermBr || TermBr->isUnconditional() || 
      !isa<ICmpInst>(TermBr->getCondition()))
Reid Spencer's avatar
Reid Spencer committed
  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());

  // Search IVUsesByStride to find Cond's IVUse if there is one.
  IVStrideUse *CondUse = 0;
  if (!FindIVForUser(Cond, CondUse, CondStride))
    return; // setcc doesn't use the IV.

  // If possible, change stride and operands of the compare instruction to
  // eliminate one stride.
  Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);

  // It's possible for the setcc instruction to be anywhere in the loop, and
  // possible for it to have multiple users.  If it is not immediately before
  // the latch block branch, move it.
  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
      Cond->moveBefore(TermBr);
    } else {
      // Otherwise, clone the terminating condition and insert into the loopend.
Reid Spencer's avatar
Reid Spencer committed
      Cond = cast<ICmpInst>(Cond->clone());
      Cond->setName(L->getHeader()->getName() + ".termcond");
      LatchBlock->getInstList().insert(TermBr, Cond);
      
      // Clone the IVUse, as the old use still exists!
      IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
      CondUse = &IVUsesByStride[*CondStride].Users.back();
    }
  }

  // If we get to here, we know that we can transform the setcc instruction to
Chris Lattner's avatar
Chris Lattner committed
  // use the post-incremented version of the IV, allowing us to coalesce the
  CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
  CondUse->isUseOfPostIncrementedValue = true;
}
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
  LI = &getAnalysis<LoopInfo>();
  DT = &getAnalysis<DominatorTree>();
  SE = &getAnalysis<ScalarEvolution>();
  TD = &getAnalysis<TargetData>();
  UIntPtrTy = TD->getIntPtrType();

  // Find all uses of induction variables in this loop, and catagorize
  // them by stride.  Start by finding all of the PHI nodes in the header for
  // this loop.  If they are induction variables, inspect their uses.
Evan Cheng's avatar
Evan Cheng committed
  SmallPtrSet<Instruction*,16> Processed;   // Don't reprocess instructions.
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
    AddUsersIfInteresting(I, L, Processed);
  if (IVUsesByStride.empty()) return false;

  // Optimize induction variables.  Some indvar uses can be transformed to use
  // strides that will be needed for other purposes.  A common example of this
  // is the exit test for the loop, which can often be rewritten to use the
  // computation of some other indvar to decide when to terminate the loop.
  OptimizeIndvars(L);


  // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
  // doing computation in byte values, promote to 32-bit values if safe.

  // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
  // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
  // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need
  // to be careful that IV's are all the same type.  Only works for intptr_t
  // indvars.

  // If we only have one stride, we can more aggressively eliminate some things.
  bool HasOneStride = IVUsesByStride.size() == 1;
  DEBUG(L->dump());
#endif

  // IVsByStride keeps IVs for one particular loop.
  IVsByStride.clear();

  // Sort the StrideOrder so we process larger strides first.
  std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());

  // Note: this processes each stride/type pair individually.  All users passed
  // into StrengthReduceStridedIVUsers have the same type AND stride.  Also,
Dan Gohman's avatar
Dan Gohman committed
  // note that we iterate over IVUsesByStride indirectly by using StrideOrder.
  // This extra layer of indirection makes the ordering of strides deterministic
  // - not dependent on map order.
  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
      IVUsesByStride.find(StrideOrder[Stride]);
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
    StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);

  // Clean up after ourselves
  if (!DeadInsts.empty()) {
    DeleteTriviallyDeadInstructions(DeadInsts);

    BasicBlock::iterator I = L->getHeader()->begin();
    PHINode *PN;
    while ((PN = dyn_cast<PHINode>(I))) {
      ++I;  // Preincrement iterator to avoid invalidating it when deleting PN.
      // At this point, we know that we have killed one or more GEP
      // instructions.  It is worth checking to see if the cann indvar is also
      // dead, so that we can remove it as well.  The requirements for the cann
      // indvar to be considered dead are:
      // 1. the cann indvar has one use
      // 2. the use is an add instruction
      // 3. the add has one use
      // 4. the add is used by the cann indvar
      // If all four cases above are true, then we can remove both the add and
      // the cann indvar.
      // FIXME: this needs to eliminate an induction variable even if it's being
      // compared against some value to decide loop termination.
      if (PN->hasOneUse()) {
Reid Spencer's avatar
Reid Spencer committed
        Instruction *BO = dyn_cast<Instruction>(*PN->use_begin());
        if (BO && (isa<BinaryOperator>(BO) || isa<CmpInst>(BO))) {
          if (BO->hasOneUse() && PN == *(BO->use_begin())) {
            DeadInsts.insert(BO);
            // Break the cycle, then delete the PHI.
            PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
            SE->deleteValueFromRecords(PN);
            PN->eraseFromParent();
    DeleteTriviallyDeadInstructions(DeadInsts);
  return false;