Skip to content
DeadStoreElimination.cpp 21.1 KiB
Newer Older
Owen Anderson's avatar
Owen Anderson committed
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal.  Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dse"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;

STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");

namespace {
  struct DSE : public FunctionPass {
    AliasAnalysis *AA;
    MemoryDependenceAnalysis *MD;

    static char ID; // Pass identification, replacement for typeid
    DSE() : FunctionPass(ID), AA(0), MD(0) {
      initializeDSEPass(*PassRegistry::getPassRegistry());
    }
      AA = &getAnalysis<AliasAnalysis>();
      MD = &getAnalysis<MemoryDependenceAnalysis>();
      DominatorTree &DT = getAnalysis<DominatorTree>();
      
      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
        // Only check non-dead blocks.  Dead blocks may have strange pointer
        // cycles that will confuse alias analysis.
        if (DT.isReachableFromEntry(I))
          Changed |= runOnBasicBlock(*I);
    bool HandleFree(CallInst *F);
    bool handleEndBlock(BasicBlock &BB);
    bool RemoveUndeadPointers(Value *Ptr, uint64_t killPointerSize,
                              SmallPtrSet<Value*, 16> &deadPointers);
    void DeleteDeadInstruction(Instruction *I,
                               SmallPtrSet<Value*, 16> *deadPointers = 0);

    // getAnalysisUsage - We require post dominance frontiers (aka Control
    // Dependence Graph)
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addPreserved<AliasAnalysis>();
INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
/// hasMemoryWrite - Does this instruction write some memory?  This only returns
/// true for things that we can analyze with other helpers below.
static bool hasMemoryWrite(Instruction *I) {
  if (isa<StoreInst>(I))
    return true;
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
Chris Lattner's avatar
Chris Lattner committed
    default:
      return false;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::init_trampoline:
    case Intrinsic::lifetime_end:
      return true;
/// getLocForWrite - Return a Location stored to by the specified instruction.
static AliasAnalysis::Location
getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    return AA.getLocation(SI);
  
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    // memcpy/memmove/memset.
    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
    // If we don't have target data around, an unknown size in Location means
    // that we should use the size of the pointee type.  This isn't valid for
    // memset/memcpy, which writes more than an i8.
    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
      return AliasAnalysis::Location();
    return Loc;
  }
  
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
  if (II == 0) return AliasAnalysis::Location();
  
  switch (II->getIntrinsicID()) {
  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
  case Intrinsic::init_trampoline:
    // If we don't have target data around, an unknown size in Location means
    // that we should use the size of the pointee type.  This isn't valid for
    // init.trampoline, which writes more than an i8.
    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
      
    // FIXME: We don't know the size of the trampoline, so we can't really
    // handle it here.
    return AliasAnalysis::Location(II->getArgOperand(0));
  case Intrinsic::lifetime_end: {
    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    return AliasAnalysis::Location(II->getArgOperand(1), Len);
  }
  }
}

/// isRemovable - If the value of this instruction and the memory it writes to
/// is unused, may we delete this instruction?
static bool isRemovable(Instruction *I) {
  // Don't remove volatile stores.
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();
  
  IntrinsicInst *II = cast<IntrinsicInst>(I);
  switch (II->getIntrinsicID()) {
  default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
  case Intrinsic::lifetime_end:
    // Never remove dead lifetime_end's, e.g. because it is followed by a
    // free.
    return false;
  case Intrinsic::init_trampoline:
    // Always safe to remove init_trampoline.
    return true;
    
  case Intrinsic::memset:
  case Intrinsic::memmove:
  case Intrinsic::memcpy:
    // Don't remove volatile memory intrinsics.
    return !cast<MemIntrinsic>(II)->isVolatile();
  }
/// getPointerOperand - Return the pointer that is being written to.
static Value *getPointerOperand(Instruction *I) {
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getPointerOperand();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return MI->getArgOperand(0);

  IntrinsicInst *II = cast<IntrinsicInst>(I);
  switch (II->getIntrinsicID()) {
Chris Lattner's avatar
Chris Lattner committed
  default: assert(false && "Unexpected intrinsic!");
  case Intrinsic::init_trampoline:
  case Intrinsic::lifetime_end:
static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
  const TargetData *TD = AA.getTargetData();
  if (TD == 0)
    return AliasAnalysis::UnknownSize;
  
  if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
    // Get size information for the alloca
    if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
      return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
    return AliasAnalysis::UnknownSize;
  }
  
  assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
  const PointerType *PT = cast<PointerType>(V->getType());
  return TD->getTypeAllocSize(PT->getElementType());
}


/// isCompleteOverwrite - Return true if a store to the 'Later' location
/// completely overwrites a store to the 'Earlier' location.
static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
                                const AliasAnalysis::Location &Earlier,
                                AliasAnalysis &AA) {
  const Value *P1 = Later.Ptr->stripPointerCasts();
  const Value *P2 = Earlier.Ptr->stripPointerCasts();
  
  // Make sure that the start pointers are the same.
  if (P1 != P2)
    return false;
  // If we don't know the sizes of either access, then we can't do a comparison.
  if (Later.Size == AliasAnalysis::UnknownSize ||
      Earlier.Size == AliasAnalysis::UnknownSize) {
    // If we have no TargetData information around, then the size of the store
    // is inferrable from the pointee type.  If they are the same type, then we
    // know that the store is safe.
    if (AA.getTargetData() == 0)
      return Later.Ptr->getType() == Earlier.Ptr->getType();
    return false;
  }
  // Make sure that the Later size is >= the Earlier size.
  if (Later.Size < Earlier.Size)
    return false;
bool DSE::runOnBasicBlock(BasicBlock &BB) {
  // Do a top-down walk on the BB.
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    Instruction *Inst = BBI++;
    
    // Handle 'free' calls specially.
    if (CallInst *F = isFreeCall(Inst)) {
      MadeChange |= HandleFree(F);
      continue;
    }
    
    // If we find something that writes memory, get its memory dependence.
    if (!hasMemoryWrite(Inst))
    MemDepResult InstDep = MD->getDependency(Inst);
    // Ignore non-local store liveness.
    // FIXME: cross-block DSE would be fun. :)
    if (InstDep.isNonLocal() || 
        // Ignore self dependence, which happens in the entry block of the
        // function.
        InstDep.getInst() == Inst)
      continue;
    // If we're storing the same value back to a pointer that we just
    // loaded from, then the store can be removed.
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
            SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
          // DeleteDeadInstruction can delete the current instruction.  Save BBI
          // in case we need it.
          WeakVH NextInst(BBI);
          
          DeleteDeadInstruction(SI);
          
          if (NextInst == 0)  // Next instruction deleted.
            BBI = BB.begin();
          else if (BBI != BB.begin())  // Revisit this instruction if possible.
            --BBI;
          ++NumFastStores;
          MadeChange = true;
          continue;
        }
      }
    }
    // Figure out what location is being stored to.
    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);

    // If we didn't get a useful location, fail.
    if (Loc.Ptr == 0)
      continue;
    
    while (!InstDep.isNonLocal()) {
      // Get the memory clobbered by the instruction we depend on.  MemDep will
      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
      // end up depending on a may- or must-aliased load, then we can't optimize
      // away the store and we bail out.  However, if we depend on on something
      // that overwrites the memory location we *can* potentially optimize it.
      //
      // Find out what memory location the dependant instruction stores.
      Instruction *DepWrite = InstDep.getInst();
      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
      // If we didn't get a useful location, or if it isn't a size, bail out.
      if (DepLoc.Ptr == 0)
        break;

      // If we find a removable write that is completely obliterated by the
      // store to 'Loc' then we can remove it.
      if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA)) {
        // Delete the store and now-dead instructions that feed it.
        DeleteDeadInstruction(DepWrite);
        ++NumFastStores;
        MadeChange = true;
        
        // DeleteDeadInstruction can delete the current instruction in loop
        // cases, reset BBI.
        BBI = Inst;
        if (BBI != BB.begin())
          --BBI;
        break;
      }
      
      // If this is a may-aliased store that is clobbering the store value, we
      // can keep searching past it for another must-aliased pointer that stores
      // to the same location.  For example, in:
      //   store -> P
      //   store -> Q
      //   store -> P
      // we can remove the first store to P even though we don't know if P and Q
      // alias.
      if (DepWrite == &BB.front()) break;
      
      // Can't look past this instruction if it might read 'Loc'.
      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
  // If this block ends in a return, unwind, or unreachable, all allocas are
  // dead at its end, which means stores to them are also dead.
  if (BB.getTerminator()->getNumSuccessors() == 0)
    MadeChange |= handleEndBlock(BB);
/// HandleFree - Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
bool DSE::HandleFree(CallInst *F) {
  MemDepResult Dep = MD->getDependency(F);
    if (Dep.isNonLocal()) return false;
    
    Instruction *Dependency = Dep.getInst();
    if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
    Value *DepPointer = getPointerOperand(Dependency)->getUnderlyingObject();
    if (AA->alias(F->getArgOperand(0), 1, DepPointer, 1) !=
    // DCE instructions only used to calculate that store
    DeleteDeadInstruction(Dependency);
    ++NumFastStores;

    // Inst's old Dependency is now deleted. Compute the next dependency,
    // which may also be dead, as in
    //    s[0] = 0;
    //    s[1] = 0; // This has just been deleted.
    //    free(s);
    Dep = MD->getDependency(F);
  } while (!Dep.isNonLocal());
Owen Anderson's avatar
Owen Anderson committed
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block.  Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock &BB) {
  bool MadeChange = false;
  
  // Pointers alloca'd in this function are dead in the end block
  SmallPtrSet<Value*, 16> DeadPointers;
  // Find all of the alloca'd pointers in the entry block.
  BasicBlock *Entry = BB.getParent()->begin();
  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      DeadPointers.insert(AI);
  
  // Treat byval arguments the same, stores to them are dead at the end of the
  // function.
  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    if (AI->hasByValAttr())
      DeadPointers.insert(AI);
  
  // Scan the basic block backwards
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    --BBI;
    
    // If we find a store, check to see if it points into a dead stack value.
    if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
      // See through pointer-to-pointer bitcasts
      Value *Pointer = getPointerOperand(BBI)->getUnderlyingObject();

      // Alloca'd pointers or byval arguments (which are functionally like
      // alloca's) are valid candidates for removal.
      if (DeadPointers.count(Pointer)) {
        // DCE instructions only used to calculate that store.
        Instruction *Dead = BBI++;
        DeleteDeadInstruction(Dead, &DeadPointers);
        ++NumFastStores;
        MadeChange = true;
      }
    }
    
    // Remove any dead non-memory-mutating instructions.
    if (isInstructionTriviallyDead(BBI)) {
      Instruction *Inst = BBI++;
      DeleteDeadInstruction(Inst, &DeadPointers);
      ++NumFastOther;
      MadeChange = true;
      continue;
    }
    
    if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
      DeadPointers.erase(A);
      continue;
    if (CallSite CS = cast<Value>(BBI)) {
      // If this call does not access memory, it can't be loading any of our
      // pointers.
      if (AA->doesNotAccessMemory(CS))
      unsigned NumModRef = 0, NumOther = 0;
      // If the call might load from any of our allocas, then any store above
      // the call is live.
      SmallVector<Value*, 8> LiveAllocas;
      for (SmallPtrSet<Value*, 16>::iterator I = DeadPointers.begin(),
           E = DeadPointers.end(); I != E; ++I) {
        // If we detect that our AA is imprecise, it's not worth it to scan the
        // rest of the DeadPointers set.  Just assume that the AA will return
        // ModRef for everything, and go ahead and bail out.
        if (NumModRef >= 16 && NumOther == 0)

        // See if the call site touches it.
        AliasAnalysis::ModRefResult A = 
          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
      
      for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
           E = LiveAllocas.end(); I != E; ++I)
        DeadPointers.erase(*I);
      // If all of the allocas were clobbered by the call then we're not going
      // to find anything else to process.
      if (DeadPointers.empty())
        return MadeChange;
      
    }
    
    Value *KillPointer = 0;
    uint64_t KillPointerSize = AliasAnalysis::UnknownSize;
    
    // If we encounter a use of the pointer, it is no longer considered dead
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
      KillPointer = L->getPointerOperand();
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
      KillPointer = V->getOperand(0);
    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
      KillPointer = cast<MemTransferInst>(BBI)->getSource();
      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
        KillPointerSize = Len->getZExtValue();
    } else {
      // Not a loading instruction.
    KillPointer = KillPointer->getUnderlyingObject();
    MadeChange |= RemoveUndeadPointers(KillPointer, KillPointerSize, BBI,
                                       DeadPointers);
/// RemoveUndeadPointers - check for uses of a pointer that make it
/// undead when scanning for dead stores to alloca's.
bool DSE::RemoveUndeadPointers(Value *killPointer, uint64_t killPointerSize,
                               SmallPtrSet<Value*, 16> &DeadPointers) {
  // If the kill pointer can be easily reduced to an alloca,
  // don't bother doing extraneous AA queries.
  if (DeadPointers.count(killPointer)) {
    DeadPointers.erase(killPointer);
  // A global can't be in the dead pointer set.
  if (isa<GlobalValue>(killPointer))
    return false;
  
  SmallVector<Value*, 16> undead;
  for (SmallPtrSet<Value*, 64>::iterator I = DeadPointers.begin(),
       E = DeadPointers.end(); I != E; ++I) {
    AliasAnalysis::AliasResult A = AA->alias(*I, getPointerSize(*I, *AA),
                                             killPointer, killPointerSize);

    // If it must-alias and a store, we can delete it
    if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {
      StoreInst *S = cast<StoreInst>(BBI);
      DeleteDeadInstruction(S, &DeadPointers);
    } else if (A != AliasAnalysis::NoAlias)
      undead.push_back(*I);
  for (SmallVector<Value*, 16>::iterator I = undead.begin(), E = undead.end();
    DeadPointers.erase(*I);
/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
/// and zero out all the operands of this instruction.  If any of them become
/// dead, delete them and the computation tree that feeds them.
///
/// If ValueSet is non-null, remove any deleted instructions from it as well.
///
void DSE::DeleteDeadInstruction(Instruction *I,
                                SmallPtrSet<Value*, 16> *ValueSet) {
  SmallVector<Instruction*, 32> NowDeadInsts;
  
  NowDeadInsts.push_back(I);
  --NumFastOther;

  // Before we touch this instruction, remove it from memdep!
  do {
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
    
    ++NumFastOther;
    
    // This instruction is dead, zap it, in stages.  Start by removing it from
    // MemDep, which needs to know the operands and needs it to be in the
    // function.
    MD->removeInstruction(DeadInst);
    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
      Value *Op = DeadInst->getOperand(op);
      DeadInst->setOperand(op, 0);
      
      // If this operand just became dead, add it to the NowDeadInsts list.
      if (!Op->use_empty()) continue;
      
      if (Instruction *OpI = dyn_cast<Instruction>(Op))
        if (isInstructionTriviallyDead(OpI))
          NowDeadInsts.push_back(OpI);
    }
    
    DeadInst->eraseFromParent();
    
    if (ValueSet) ValueSet->erase(DeadInst);
  } while (!NowDeadInsts.empty());