Newer
Older
// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines GRSimpleVals, a sub-class of GRTransferFuncs that
// provides transfer functions for performing simple value tracking with
// limited support for symbolics.
//
//===----------------------------------------------------------------------===//
#include "GRSimpleVals.h"
Ted Kremenek
committed
#include "BasicObjCFoundationChecks.h"
#include "clang/Basic/SourceManager.h"
Ted Kremenek
committed
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/LocalCheckers.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "llvm/Support/Compiler.h"
Ted Kremenek
committed
#include <sstream>
using namespace clang;
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
template <typename ITERATOR> inline
ExplodedNode<ValueState>* GetNode(ITERATOR I) {
return *I;
}
template <> inline
ExplodedNode<ValueState>* GetNode(GRExprEngine::undef_arg_iterator I) {
return I->first;
}
template <typename ITER>
void GenericEmitWarnings(BugReporter& BR, BugType& D, ITER I, ITER E) {
for (; I != E; ++I) {
Ted Kremenek
committed
BugReport R(D, GetNode(I));
BR.EmitWarning(R);
}
}
//===----------------------------------------------------------------------===//
// Bug Descriptions.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN NullDeref : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "null dereference";
}
virtual const char* getDescription() const {
return "Dereference of null pointer.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.null_derefs_begin(),
Eng.null_derefs_end());
}
};
class VISIBILITY_HIDDEN UndefDeref : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "bad dereference";
virtual const char* getDescription() const {
return "Dereference of undefined value.";
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.undef_derefs_begin(),
Eng.undef_derefs_end());
}
};
class VISIBILITY_HIDDEN UndefBranch : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "uninitialized value";
}
virtual const char* getDescription() const {
return "Branch condition evaluates to an uninitialized value.";
}
virtual void EmitWarnings(BugReporter& BR);
class VISIBILITY_HIDDEN DivZero : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "divide-by-zero";
}
virtual const char* getDescription() const {
return "Division by zero/undefined value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.explicit_bad_divides_begin(),
Eng.explicit_bad_divides_end());
}
};
class VISIBILITY_HIDDEN UndefResult : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "undefined result";
}
virtual const char* getDescription() const {
return "Result of operation is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.undef_results_begin(),
Ted Kremenek
committed
Eng.undef_results_end());
}
class VISIBILITY_HIDDEN BadCall : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "invalid function call";
}
virtual const char* getDescription() const {
return "Called function is a NULL or undefined function pointer value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.bad_calls_begin(),
Ted Kremenek
committed
Eng.bad_calls_end());
}
class VISIBILITY_HIDDEN BadArg : public BugTypeCacheLocation {
public:
virtual ~BadArg() {}
virtual const char* getName() const {
return "bad argument";
}
virtual const char* getDescription() const {
return "Pass-by-value argument in function is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefArgsTy::iterator I = Eng.undef_arg_begin(),
E = Eng.undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
Ted Kremenek
committed
RangedBugReport report(*this, I->first);
report.addRange(I->second->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
}
class VISIBILITY_HIDDEN BadMsgExprArg : public BadArg {
public:
virtual const char* getName() const {
return "bad argument";
virtual const char* getDescription() const {
return "Pass-by-value argument in message expression is undefined.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefArgsTy::iterator I=Eng.msg_expr_undef_arg_begin(),
Ted Kremenek
committed
E = Eng.msg_expr_undef_arg_end(); I!=E; ++I) {
// Generate a report for this bug.
Ted Kremenek
committed
RangedBugReport report(*this, I->first);
report.addRange(I->second->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
Ted Kremenek
committed
}
}
class VISIBILITY_HIDDEN BadReceiver : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "bad receiver";
virtual const char* getDescription() const {
return "Receiver in message expression is an uninitialized value.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::UndefReceiversTy::iterator I=Eng.undef_receivers_begin(),
End = Eng.undef_receivers_end(); I!=End; ++I) {
// Generate a report for this bug.
Ted Kremenek
committed
RangedBugReport report(*this, *I);
ExplodedNode<ValueState>* N = *I;
Stmt *S = cast<PostStmt>(N->getLocation()).getStmt();
Expr* E = cast<ObjCMessageExpr>(S)->getReceiver();
assert (E && "Receiver cannot be NULL");
report.addRange(E->getSourceRange());
// Emit the warning.
BR.EmitWarning(report);
}
Ted Kremenek
committed
class VISIBILITY_HIDDEN RetStack : public BugTypeCacheLocation {
public:
virtual const char* getName() const {
return "return of stack address";
virtual const char* getDescription() const {
return "Address of stack-allocated variable returned.";
}
virtual void EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
GenericEmitWarnings(BR, *this, Eng.ret_stackaddr_begin(),
Ted Kremenek
committed
Eng.ret_stackaddr_end());
}
};
} // end anonymous namespace
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
namespace {
struct VISIBILITY_HIDDEN FindUndefExpr {
ValueStateManager& VM;
ValueState* St;
FindUndefExpr(ValueStateManager& V, ValueState* S) : VM(V), St(S) {}
Expr* FindExpr(Expr* Ex) {
if (!MatchesCriteria(Ex))
return 0;
for (Stmt::child_iterator I=Ex->child_begin(), E=Ex->child_end(); I!=E; ++I)
if (Expr* ExI = dyn_cast_or_null<Expr>(*I)) {
Expr* E2 = FindExpr(ExI);
if (E2) return E2;
}
return Ex;
}
bool MatchesCriteria(Expr* Ex) { return VM.GetRVal(St, Ex).isUndef(); }
};
} // end anonymous namespace
void UndefBranch::EmitWarnings(BugReporter& BR) {
GRExprEngine& Eng = BR.getEngine();
for (GRExprEngine::undef_branch_iterator I=Eng.undef_branches_begin(),
E=Eng.undef_branches_end(); I!=E; ++I) {
// What's going on here: we want to highlight the subexpression of the
// condition that is the most likely source of the "uninitialized
// branch condition." We do a recursive walk of the condition's
// subexpressions and roughly look for the most nested subexpression
// that binds to Undefined. We then highlight that expression's range.
BlockEdge B = cast<BlockEdge>((*I)->getLocation());
Expr* Ex = cast<Expr>(B.getSrc()->getTerminatorCondition());
assert (Ex && "Block must have a terminator.");
// Get the predecessor node and check if is a PostStmt with the Stmt
// being the terminator condition. We want to inspect the state
// of that node instead because it will contain main information about
// the subexpressions.
assert (!(*I)->pred_empty());
// Note: any predecessor will do. They should have identical state,
// since all the BlockEdge did was act as an error sink since the value
// had to already be undefined.
ExplodedNode<ValueState> *N = *(*I)->pred_begin();
ProgramPoint P = N->getLocation();
ValueState* St = (*I)->getState();
if (PostStmt* PS = dyn_cast<PostStmt>(&P))
if (PS->getStmt() == Ex)
St = N->getState();
FindUndefExpr FindIt(Eng.getStateManager(), St);
Ex = FindIt.FindExpr(Ex);
RangedBugReport R(*this, *I);
R.addRange(Ex->getSourceRange());
BR.EmitWarning(R);
}
}
void GRSimpleVals::RegisterChecks(GRExprEngine& Eng) {
Ted Kremenek
committed
// Path-sensitive checks.
Eng.Register(new NullDeref());
Eng.Register(new UndefDeref());
Eng.Register(new UndefBranch());
Eng.Register(new DivZero());
Eng.Register(new UndefResult());
Eng.Register(new BadCall());
Eng.Register(new RetStack());
Eng.Register(new BadArg());
Eng.Register(new BadMsgExprArg());
Eng.Register(new BadReceiver());
Ted Kremenek
committed
// Flow-sensitive checks.
Eng.Register(MakeDeadStoresChecker());
// Add extra checkers.
GRSimpleAPICheck* FoundationCheck =
CreateBasicObjCFoundationChecks(Eng.getContext(), &Eng.getStateManager());
Eng.AddObjCMessageExprCheck(FoundationCheck);
}
//===----------------------------------------------------------------------===//
// Transfer Function creation for External clients.
//===----------------------------------------------------------------------===//
GRTransferFuncs* clang::MakeGRSimpleValsTF() { return new GRSimpleVals(); }
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) {
if (!isa<nonlval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
Ted Kremenek
committed
V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
V.extOrTrunc(Eng.getContext().getTypeSize(T));
Ted Kremenek
committed
if (LVal::IsLValType(T))
return lval::ConcreteInt(BasicVals.getValue(V));
else
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Casts.
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) {
// Casts from pointers -> pointers, just return the lval.
//
// Casts from pointers -> references, just return the lval. These
// can be introduced by the frontend for corner cases, e.g
// casting from va_list* to __builtin_va_list&.
//
Ted Kremenek
committed
if (LVal::IsLValType(T) || T->isReferenceType())
return X;
assert (T->isIntegerType());
if (!isa<lval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
Ted Kremenek
committed
V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T));
V.extOrTrunc(Eng.getContext().getTypeSize(T));
return nonlval::ConcreteInt(BasicVals.getValue(V));
Ted Kremenek
committed
}
// Unary operators.
RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){
Ted Kremenek
committed
switch (X.getSubKind()) {
Ted Kremenek
committed
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalMinus(Eng.getBasicVals(), U);
Ted Kremenek
committed
default:
return UnknownVal();
RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) {
Ted Kremenek
committed
switch (X.getSubKind()) {
Ted Kremenek
committed
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalComplement(Eng.getBasicVals());
Ted Kremenek
committed
default:
return UnknownVal();
Ted Kremenek
committed
}
}
// Binary operators.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
while (1) {
switch (L.getSubKind()) {
default:
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(R)) {
const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);
return L_CI.EvalBinOp(BasicVals, Op, R_CI);
}
else {
NonLVal tmp = R;
R = L;
L = tmp;
continue;
}
case nonlval::SymbolValKind: {
if (isa<nonlval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
cast<nonlval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
else
return UnknownVal();
}
}
}
}
Ted Kremenek
committed
Ted Kremenek
committed
// Binary Operators (except assignments and comma).
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, LVal R) {
Ted Kremenek
committed
switch (Op) {
Ted Kremenek
committed
default:
return UnknownVal();
case BinaryOperator::EQ:
return EvalEQ(Eng, L, R);
Ted Kremenek
committed
case BinaryOperator::NE:
return EvalNE(Eng, L, R);
Ted Kremenek
committed
}
}
Ted Kremenek
committed
// Pointer arithmetic.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, NonLVal R) {
return UnknownVal();
Ted Kremenek
committed
}
// Equality operators for LVals.
RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "EQ not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() ==
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement == for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
}
// FIXME: Different offsets can map to the same memory cell.
case lval::ArrayOffsetKind:
case lval::FieldOffsetKind:
// Fall-through.
case lval::DeclValKind:
Ted Kremenek
committed
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
return NonLVal::MakeIntTruthVal(BasicVals, L == R);
}
return NonLVal::MakeIntTruthVal(BasicVals, false);
}
RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "NE not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() !=
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement != for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
break;
}
// FIXME: Different offsets can map to the same memory cell.
case lval::ArrayOffsetKind:
case lval::FieldOffsetKind:
// Fall-through.
case lval::DeclValKind:
Ted Kremenek
committed
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
return NonLVal::MakeIntTruthVal(BasicVals, L != R);
}
return NonLVal::MakeIntTruthVal(BasicVals, true);
}
//===----------------------------------------------------------------------===//
// Transfer function for function calls.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalCall(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
ExplodedNode<ValueState>* Pred) {
Ted Kremenek
committed
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
Ted Kremenek
committed
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
Ted Kremenek
committed
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
else if (isa<nonlval::LValAsInteger>(V))
St = StateMgr.SetRVal(St, cast<nonlval::LValAsInteger>(V).getLVal(),
UnknownVal());
Ted Kremenek
committed
// Make up a symbol for the return value of this function.
if (CE->getType() != Eng.getContext().VoidTy) {
unsigned Count = Builder.getCurrentBlockCount();
Ted Kremenek
committed
SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count);
Ted Kremenek
committed
Ted Kremenek
committed
RVal X = LVal::IsLValType(CE->getType())
Ted Kremenek
committed
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false);
}
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
//===----------------------------------------------------------------------===//
// Transfer function for Objective-C message expressions.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalObjCMessageExpr(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
ObjCMessageExpr* ME,
ExplodedNode<ValueState>* Pred) {
// The basic transfer function logic for message expressions does nothing.
// We just invalidate all arguments passed in by references.
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
}
Builder.MakeNode(Dst, ME, Pred, St);
}