Skip to content
LiveIntervalAnalysis.cpp 84.3 KiB
Newer Older
          if (I != E && (next(I) != E || IsLiveIn))
            return false;
        }
Evan Cheng's avatar
Evan Cheng committed

  unsigned ImpUse = getReMatImplicitUse(li, MI);
  if (ImpUse) {
    const LiveInterval &ImpLi = getInterval(ImpUse);
    for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
           re = mri_->use_end(); ri != re; ++ri) {
      MachineInstr *UseMI = &*ri;
      unsigned UseIdx = getInstructionIndex(UseMI);
      if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
        continue;
      if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
        return false;
    }

    // If a register operand of the re-materialized instruction is going to
    // be spilled next, then it's not legal to re-materialize this instruction.
    for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
      if (ImpUse == SpillIs[i]->reg)
        return false;
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       const VNInfo *ValNo, MachineInstr *MI) {
  SmallVector<LiveInterval*, 4> Dummy1;
  bool Dummy2;
  return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
}

/// isReMaterializable - Returns true if every definition of MI of every
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       SmallVectorImpl<LiveInterval*> &SpillIs,
                                       bool &isLoad) {
  isLoad = false;
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    unsigned DefIdx = VNI->def;
    if (DefIdx == ~1U)
      continue; // Dead val#.
    // Is the def for the val# rematerializable?
    if (DefIdx == ~0u)
      return false;
    MachineInstr *ReMatDefMI = getInstructionFromIndex(DefIdx);
    bool DefIsLoad = false;
        !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
Evan Cheng's avatar
Evan Cheng committed
      return false;
Evan Cheng's avatar
Evan Cheng committed
  }
  return true;
}

/// FilterFoldedOps - Filter out two-address use operands. Return
/// true if it finds any issue with the operands that ought to prevent
/// folding.
static bool FilterFoldedOps(MachineInstr *MI,
                            SmallVector<unsigned, 2> &Ops,
                            unsigned &MRInfo,
                            SmallVector<unsigned, 2> &FoldOps) {
  MRInfo = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    unsigned OpIdx = Ops[i];
    MachineOperand &MO = MI->getOperand(OpIdx);
      MRInfo |= (unsigned)VirtRegMap::isMod;
    else {
      // Filter out two-address use operand(s).
      if (MI->isRegTiedToDefOperand(OpIdx)) {
        MRInfo = VirtRegMap::isModRef;
        continue;
      }
      MRInfo |= (unsigned)VirtRegMap::isRef;
    }
    FoldOps.push_back(OpIdx);
  return false;
}
                           

/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
/// slot / to reg or any rematerialized load into ith operand of specified
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
                                         VirtRegMap &vrm, MachineInstr *DefMI,
                                         unsigned InstrIdx,
                                         SmallVector<unsigned, 2> &Ops,
                                         bool isSS, int Slot, unsigned Reg) {
  // If it is an implicit def instruction, just delete it.
  if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
    RemoveMachineInstrFromMaps(MI);
    vrm.RemoveMachineInstrFromMaps(MI);
    MI->eraseFromParent();
    ++numFolds;
    return true;
  }

  // Filter the list of operand indexes that are to be folded. Abort if
  // any operand will prevent folding.
  unsigned MRInfo = 0;
  SmallVector<unsigned, 2> FoldOps;
  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
    return false;
  // The only time it's safe to fold into a two address instruction is when
  // it's folding reload and spill from / into a spill stack slot.
  if (DefMI && (MRInfo & VirtRegMap::isMod))
Evan Cheng's avatar
Evan Cheng committed
  MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
                           : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
Evan Cheng's avatar
Evan Cheng committed
  if (fmi) {
    // Remember this instruction uses the spill slot.
    if (isSS) vrm.addSpillSlotUse(Slot, fmi);

Evan Cheng's avatar
Evan Cheng committed
    // Attempt to fold the memory reference into the instruction. If
    // we can do this, we don't need to insert spill code.
    MachineBasicBlock &MBB = *MI->getParent();
    if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
      vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
Evan Cheng's avatar
Evan Cheng committed
    vrm.transferSpillPts(MI, fmi);
    vrm.transferRestorePts(MI, fmi);
    vrm.transferEmergencySpills(MI, fmi);
Evan Cheng's avatar
Evan Cheng committed
    mi2iMap_.erase(MI);
    i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
    mi2iMap_[fmi] = InstrIdx;
Evan Cheng's avatar
Evan Cheng committed
    MI = MBB.insert(MBB.erase(MI), fmi);
Evan Cheng's avatar
Evan Cheng committed
    return true;
  }
  return false;
}

/// canFoldMemoryOperand - Returns true if the specified load / store
/// folding is possible.
bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
                                         bool ReMat) const {
  // Filter the list of operand indexes that are to be folded. Abort if
  // any operand will prevent folding.
  unsigned MRInfo = 0;
  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
    return false;
  // It's only legal to remat for a use, not a def.
  if (ReMat && (MRInfo & VirtRegMap::isMod))
  return tii_->canFoldMemoryOperand(MI, FoldOps);
}

Evan Cheng's avatar
Evan Cheng committed
bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
  SmallPtrSet<MachineBasicBlock*, 4> MBBs;
  for (LiveInterval::Ranges::const_iterator
         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
    std::vector<IdxMBBPair>::const_iterator II =
      std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start);
    if (II == Idx2MBBMap.end())
      continue;
    if (I->end > II->first)  // crossing a MBB.
      return false;
    MBBs.insert(II->second);
    if (MBBs.size() > 1)
      return false;
  }
  return true;
}

/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
/// interval on to-be re-materialized operands of MI) with new register.
void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
                                       MachineInstr *MI, unsigned NewVReg,
                                       VirtRegMap &vrm) {
  // There is an implicit use. That means one of the other operand is
  // being remat'ed and the remat'ed instruction has li.reg as an
  // use operand. Make sure we rewrite that as well.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (!vrm.isReMaterialized(Reg))
      continue;
    MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
    MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
    if (UseMO)
      UseMO->setReg(NewVReg);
Evan Cheng's avatar
Evan Cheng committed
/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
                 bool TrySplit, unsigned index, unsigned end,  MachineInstr *MI,
Evan Cheng's avatar
Evan Cheng committed
                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
Evan Cheng's avatar
Evan Cheng committed
                 unsigned Slot, int LdSlot,
                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
Evan Cheng's avatar
Evan Cheng committed
                 const TargetRegisterClass* rc,
                 SmallVector<int, 4> &ReMatIds,
                 const MachineLoopInfo *loopInfo,
                 unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
                 DenseMap<unsigned,unsigned> &MBBVRegsMap,
                 std::vector<LiveInterval*> &NewLIs, float &SSWeight) {
  MachineBasicBlock *MBB = MI->getParent();
  unsigned loopDepth = loopInfo->getLoopDepth(MBB);
Evan Cheng's avatar
Evan Cheng committed
 RestartInstruction:
  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
    MachineOperand& mop = MI->getOperand(i);
Evan Cheng's avatar
Evan Cheng committed
      continue;
    unsigned Reg = mop.getReg();
    unsigned RegI = Reg;
    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
Evan Cheng's avatar
Evan Cheng committed
      continue;
    if (Reg != li.reg)
      continue;

    bool TryFold = !DefIsReMat;
    bool FoldSS = true; // Default behavior unless it's a remat.
Evan Cheng's avatar
Evan Cheng committed
    int FoldSlot = Slot;
    if (DefIsReMat) {
      // If this is the rematerializable definition MI itself and
      // all of its uses are rematerialized, simply delete it.
Evan Cheng's avatar
Evan Cheng committed
      if (MI == ReMatOrigDefMI && CanDelete) {
        DOUT << "\t\t\t\tErasing re-materlizable def: ";
        DOUT << MI << '\n';
Evan Cheng's avatar
Evan Cheng committed
        RemoveMachineInstrFromMaps(MI);
        vrm.RemoveMachineInstrFromMaps(MI);
Evan Cheng's avatar
Evan Cheng committed
        MI->eraseFromParent();
        break;
      }

      // If def for this use can't be rematerialized, then try folding.
      // If def is rematerializable and it's a load, also try folding.
      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
Evan Cheng's avatar
Evan Cheng committed
      if (isLoad) {
        // Try fold loads (from stack slot, constant pool, etc.) into uses.
        FoldSS = isLoadSS;
        FoldSlot = LdSlot;
      }
    }

    // Scan all of the operands of this instruction rewriting operands
    // to use NewVReg instead of li.reg as appropriate.  We do this for
    // two reasons:
    //
    //   1. If the instr reads the same spilled vreg multiple times, we
    //      want to reuse the NewVReg.
    //   2. If the instr is a two-addr instruction, we are required to
    //      keep the src/dst regs pinned.
    //
    // Keep track of whether we replace a use and/or def so that we can
    // create the spill interval with the appropriate range. 
Evan Cheng's avatar
Evan Cheng committed
    HasUse = mop.isUse();
    HasDef = mop.isDef();
    SmallVector<unsigned, 2> Ops;
    Ops.push_back(i);
Evan Cheng's avatar
Evan Cheng committed
    for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
      const MachineOperand &MOj = MI->getOperand(j);
Evan Cheng's avatar
Evan Cheng committed
        continue;
      if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ))
Evan Cheng's avatar
Evan Cheng committed
        continue;
      if (RegJ == RegI) {
        Ops.push_back(j);
        HasUse |= MOj.isUse();
        HasDef |= MOj.isDef();
    if (HasUse && !li.liveAt(getUseIndex(index)))
      // Must be defined by an implicit def. It should not be spilled. Note,
      // this is for correctness reason. e.g.
      // 8   %reg1024<def> = IMPLICIT_DEF
      // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
      // The live range [12, 14) are not part of the r1024 live interval since
      // it's defined by an implicit def. It will not conflicts with live
      // interval of r1025. Now suppose both registers are spilled, you can
Evan Cheng's avatar
Evan Cheng committed
      // easily see a situation where both registers are reloaded before
      // the INSERT_SUBREG and both target registers that would overlap.
      HasUse = false;

    // Update stack slot spill weight if we are splitting.
    float Weight = getSpillWeight(HasDef, HasUse, loopDepth);
      if (!TrySplit)
      SSWeight += Weight;

David Greene's avatar
 
David Greene committed
    // Create a new virtual register for the spill interval.
    // Create the new register now so we can map the fold instruction
    // to the new register so when it is unfolded we get the correct
    // answer.
    bool CreatedNewVReg = false;
    if (NewVReg == 0) {
      NewVReg = mri_->createVirtualRegister(rc);
      vrm.grow();
      CreatedNewVReg = true;
    }

    if (!TryFold)
      CanFold = false;
    else {
      // Do not fold load / store here if we are splitting. We'll find an
      // optimal point to insert a load / store later.
      if (!TrySplit) {
        if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
David Greene's avatar
 
David Greene committed
                                 Ops, FoldSS, FoldSlot, NewVReg)) {
          // Folding the load/store can completely change the instruction in
          // unpredictable ways, rescan it from the beginning.
David Greene's avatar
 
David Greene committed

          if (FoldSS) {
            // We need to give the new vreg the same stack slot as the
            // spilled interval.
            vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
          }

          if (isRemoved(MI)) {
            SSWeight -= Weight;
        // We'll try to fold it later if it's profitable.
        CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
    if (mop.isImplicit())
      rewriteImplicitOps(li, MI, NewVReg, vrm);
    for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
      MachineOperand &mopj = MI->getOperand(Ops[j]);
      mopj.setReg(NewVReg);
      if (mopj.isImplicit())
        rewriteImplicitOps(li, MI, NewVReg, vrm);
    }
Evan Cheng's avatar
Evan Cheng committed
    if (CreatedNewVReg) {
      if (DefIsReMat) {
        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
        if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
Evan Cheng's avatar
Evan Cheng committed
          // Each valnum may have its own remat id.
          ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
Evan Cheng's avatar
Evan Cheng committed
        } else {
          vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
Evan Cheng's avatar
Evan Cheng committed
        }
        if (!CanDelete || (HasUse && HasDef)) {
          // If this is a two-addr instruction then its use operands are
          // rematerializable but its def is not. It should be assigned a
          // stack slot.
          vrm.assignVirt2StackSlot(NewVReg, Slot);
        }
Evan Cheng's avatar
Evan Cheng committed
      } else {
        vrm.assignVirt2StackSlot(NewVReg, Slot);
      }
    } else if (HasUse && HasDef &&
               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
      // If this interval hasn't been assigned a stack slot (because earlier
      // def is a deleted remat def), do it now.
      assert(Slot != VirtRegMap::NO_STACK_SLOT);
      vrm.assignVirt2StackSlot(NewVReg, Slot);
    // Re-matting an instruction with virtual register use. Add the
    // register as an implicit use on the use MI.
    if (DefIsReMat && ImpUse)
      MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));

Evan Cheng's avatar
Evan Cheng committed
    // create a new register interval for this spill / remat.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
Evan Cheng's avatar
Evan Cheng committed
    if (CreatedNewVReg) {
      NewLIs.push_back(&nI);
      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
Evan Cheng's avatar
Evan Cheng committed
      if (TrySplit)
        vrm.setIsSplitFromReg(NewVReg, li.reg);
    }
Evan Cheng's avatar
Evan Cheng committed

    if (HasUse) {
Evan Cheng's avatar
Evan Cheng committed
      if (CreatedNewVReg) {
        LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
                     nI.getNextValue(~0U, 0, VNInfoAllocator));
        DOUT << " +" << LR;
        nI.addRange(LR);
      } else {
        // Extend the split live interval to this def / use.
        unsigned End = getUseIndex(index)+1;
        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
                     nI.getValNumInfo(nI.getNumValNums()-1));
        DOUT << " +" << LR;
        nI.addRange(LR);
      }
Evan Cheng's avatar
Evan Cheng committed
    }
    if (HasDef) {
      LiveRange LR(getDefIndex(index), getStoreIndex(index),
                   nI.getNextValue(~0U, 0, VNInfoAllocator));
      DOUT << " +" << LR;
      nI.addRange(LR);
    }
Evan Cheng's avatar
Evan Cheng committed
    DOUT << "\t\t\t\tAdded new interval: ";
    nI.print(DOUT, tri_);
Evan Cheng's avatar
Evan Cheng committed
    DOUT << '\n';
  }
Evan Cheng's avatar
Evan Cheng committed
}
Evan Cheng's avatar
Evan Cheng committed
bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
                                   const VNInfo *VNI,
                                   MachineBasicBlock *MBB, unsigned Idx) const {
Evan Cheng's avatar
Evan Cheng committed
  unsigned End = getMBBEndIdx(MBB);
  for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
    unsigned KillIdx = VNI->kills[j];
    if (KillIdx > Idx && KillIdx < End)
      return true;
Evan Cheng's avatar
Evan Cheng committed
  }
  return false;
}

/// RewriteInfo - Keep track of machine instrs that will be rewritten
/// during spilling.
namespace {
  struct RewriteInfo {
    unsigned Index;
    MachineInstr *MI;
    bool HasUse;
    bool HasDef;
    RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d)
      : Index(i), MI(mi), HasUse(u), HasDef(d) {}
  };

  struct RewriteInfoCompare {
    bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
      return LHS.Index < RHS.Index;
    }
  };
}
Evan Cheng's avatar
Evan Cheng committed
void LiveIntervals::
Evan Cheng's avatar
Evan Cheng committed
rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
Evan Cheng's avatar
Evan Cheng committed
                    LiveInterval::Ranges::const_iterator &I,
Evan Cheng's avatar
Evan Cheng committed
                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
Evan Cheng's avatar
Evan Cheng committed
                    unsigned Slot, int LdSlot,
                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
Evan Cheng's avatar
Evan Cheng committed
                    const TargetRegisterClass* rc,
                    SmallVector<int, 4> &ReMatIds,
                    const MachineLoopInfo *loopInfo,
Evan Cheng's avatar
Evan Cheng committed
                    BitVector &SpillMBBs,
                    DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
                    DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
                    DenseMap<unsigned,unsigned> &MBBVRegsMap,
                    std::vector<LiveInterval*> &NewLIs, float &SSWeight) {
Evan Cheng's avatar
Evan Cheng committed
  unsigned NewVReg = 0;
  unsigned start = getBaseIndex(I->start);
Evan Cheng's avatar
Evan Cheng committed
  unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;

  // First collect all the def / use in this live range that will be rewritten.
  // Make sure they are sorted according to instruction index.
  std::vector<RewriteInfo> RewriteMIs;
  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
         re = mri_->reg_end(); ri != re; ) {
    MachineOperand &O = ri.getOperand();
    ++ri;
    assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
    unsigned index = getInstructionIndex(MI);
    if (index < start || index >= end)
      continue;
    if (O.isUse() && !li.liveAt(getUseIndex(index)))
      // Must be defined by an implicit def. It should not be spilled. Note,
      // this is for correctness reason. e.g.
      // 8   %reg1024<def> = IMPLICIT_DEF
      // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
      // The live range [12, 14) are not part of the r1024 live interval since
      // it's defined by an implicit def. It will not conflicts with live
      // interval of r1025. Now suppose both registers are spilled, you can
Evan Cheng's avatar
Evan Cheng committed
      // easily see a situation where both registers are reloaded before
      // the INSERT_SUBREG and both target registers that would overlap.
      continue;
    RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef()));
  }
  std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());

  unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
  // Now rewrite the defs and uses.
  for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
    RewriteInfo &rwi = RewriteMIs[i];
    ++i;
    unsigned index = rwi.Index;
    bool MIHasUse = rwi.HasUse;
    bool MIHasDef = rwi.HasDef;
    MachineInstr *MI = rwi.MI;
    // If MI def and/or use the same register multiple times, then there
    // are multiple entries.
    unsigned NumUses = MIHasUse;
    while (i != e && RewriteMIs[i].MI == MI) {
      assert(RewriteMIs[i].Index == index);
      bool isUse = RewriteMIs[i].HasUse;
      if (isUse) ++NumUses;
      MIHasUse |= isUse;
      MIHasDef |= RewriteMIs[i].HasDef;
      ++i;
    }
Evan Cheng's avatar
Evan Cheng committed
    MachineBasicBlock *MBB = MI->getParent();
    if (ImpUse && MI != ReMatDefMI) {
      // Re-matting an instruction with virtual register use. Update the
      // register interval's spill weight to HUGE_VALF to prevent it from
      // being spilled.
      LiveInterval &ImpLi = getInterval(ImpUse);
    unsigned MBBId = MBB->getNumber();
    if (TrySplit) {
      DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
        // One common case:
        // x = use
        // ...
        // ...
        // def = ...
        //     = use
        // It's better to start a new interval to avoid artifically
        // extend the new interval.
        if (MIHasDef && !MIHasUse) {
          MBBVRegsMap.erase(MBB->getNumber());

    bool IsNew = ThisVReg == 0;
    if (IsNew) {
      // This ends the previous live interval. If all of its def / use
      // can be folded, give it a low spill weight.
      if (NewVReg && TrySplit && AllCanFold) {
        LiveInterval &nI = getOrCreateInterval(NewVReg);
        nI.weight /= 10.0F;
      }
      AllCanFold = true;
    }
    NewVReg = ThisVReg;

Evan Cheng's avatar
Evan Cheng committed
    bool HasDef = false;
    bool HasUse = false;
    bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
                         index, end, MI, ReMatOrigDefMI, ReMatDefMI,
                         Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                         CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
                         ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs, SSWeight);
Evan Cheng's avatar
Evan Cheng committed
    if (!HasDef && !HasUse)
      continue;

Evan Cheng's avatar
Evan Cheng committed
    // Update weight of spill interval.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
    if (!TrySplit) {
Evan Cheng's avatar
Evan Cheng committed
      // The spill weight is now infinity as it cannot be spilled again.
      nI.weight = HUGE_VALF;
      continue;
    }

    // Keep track of the last def and first use in each MBB.
    if (HasDef) {
      if (MI != ReMatOrigDefMI || !CanDelete) {
        bool HasKill = false;
        if (!HasUse)
          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
        else {
          // If this is a two-address code, then this index starts a new VNInfo.
          const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index));
          if (VNI)
            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
Evan Cheng's avatar
Evan Cheng committed
        }
        DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
          if (SII == SpillIdxes.end()) {
            std::vector<SRInfo> S;
            S.push_back(SRInfo(index, NewVReg, true));
            SpillIdxes.insert(std::make_pair(MBBId, S));
          } else if (SII->second.back().vreg != NewVReg) {
            SII->second.push_back(SRInfo(index, NewVReg, true));
          } else if ((int)index > SII->second.back().index) {
            // If there is an earlier def and this is a two-address
            // instruction, then it's not possible to fold the store (which
            // would also fold the load).
            SRInfo &Info = SII->second.back();
            Info.index = index;
            Info.canFold = !HasUse;
Evan Cheng's avatar
Evan Cheng committed
          }
        } else if (SII != SpillIdxes.end() &&
                   SII->second.back().vreg == NewVReg &&
                   (int)index > SII->second.back().index) {
          // There is an earlier def that's not killed (must be two-address).
          // The spill is no longer needed.
          SII->second.pop_back();
          if (SII->second.empty()) {
            SpillIdxes.erase(MBBId);
            SpillMBBs.reset(MBBId);
          }
      DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
      if (SII != SpillIdxes.end() &&
          SII->second.back().vreg == NewVReg &&
          (int)index > SII->second.back().index)
        // Use(s) following the last def, it's not safe to fold the spill.
      DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
        // If we are splitting live intervals, only fold if it's the first
        // use and there isn't another use later in the MBB.
      else if (IsNew) {
        // Only need a reload if there isn't an earlier def / use.
        if (RII == RestoreIdxes.end()) {
          std::vector<SRInfo> Infos;
          Infos.push_back(SRInfo(index, NewVReg, true));
          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
        } else {
          RII->second.push_back(SRInfo(index, NewVReg, true));
        }
Evan Cheng's avatar
Evan Cheng committed
    }
    unsigned loopDepth = loopInfo->getLoopDepth(MBB);
    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
Evan Cheng's avatar
Evan Cheng committed
  }

  if (NewVReg && TrySplit && AllCanFold) {
    // If all of its def / use can be folded, give it a low spill weight.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
    nI.weight /= 10.0F;
  }
bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
                        BitVector &RestoreMBBs,
                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
  if (!RestoreMBBs[Id])
    return false;
  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
    if (Restores[i].index == index &&
        Restores[i].vreg == vr &&
        Restores[i].canFold)
      return true;
  return false;
}

void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
                        BitVector &RestoreMBBs,
                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
  if (!RestoreMBBs[Id])
    return;
  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
    if (Restores[i].index == index && Restores[i].vreg)
      Restores[i].index = -1;
}
/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
/// spilled and create empty intervals for their uses.
void
LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
                                    const TargetRegisterClass* rc,
                                    std::vector<LiveInterval*> &NewLIs) {
  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
         re = mri_->reg_end(); ri != re; ) {
    if (O.isDef()) {
      assert(MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF &&
             "Register def was not rewritten?");
      RemoveMachineInstrFromMaps(MI);
      vrm.RemoveMachineInstrFromMaps(MI);
      MI->eraseFromParent();
    } else {
      // This must be an use of an implicit_def so it's not part of the live
      // interval. Create a new empty live interval for it.
      // FIXME: Can we simply erase some of the instructions? e.g. Stores?
      unsigned NewVReg = mri_->createVirtualRegister(rc);
      vrm.grow();
      vrm.setIsImplicitlyDefined(NewVReg);
      NewLIs.push_back(&getOrCreateInterval(NewVReg));
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.getReg() == li.reg)
std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpillsFast(const LiveInterval &li,
                          const MachineLoopInfo *loopInfo,
                          VirtRegMap &vrm, float& SSWeight) {
Owen Anderson's avatar
Owen Anderson committed
  unsigned slot = vrm.assignVirt2StackSlot(li.reg);

  std::vector<LiveInterval*> added;

  assert(li.weight != HUGE_VALF &&
         "attempt to spill already spilled interval!");

  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
  DEBUG(li.dump());
  DOUT << '\n';

  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);

  MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg);
  while (RI != mri_->reg_end()) {
    MachineInstr* MI = &*RI;
    SmallVector<unsigned, 2> Indices;
    bool HasUse = false;
    bool HasDef = false;
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
      MachineOperand& mop = MI->getOperand(i);
      if (!mop.isReg() || mop.getReg() != li.reg) continue;
      
      HasUse |= MI->getOperand(i).isUse();
      HasDef |= MI->getOperand(i).isDef();
      
      Indices.push_back(i);
    if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI),
                              Indices, true, slot, li.reg)) {
      unsigned NewVReg = mri_->createVirtualRegister(rc);
      vrm.grow();
      vrm.assignVirt2StackSlot(NewVReg, slot);
      
      // create a new register for this spill
      LiveInterval &nI = getOrCreateInterval(NewVReg);

      // the spill weight is now infinity as it
      // cannot be spilled again
      nI.weight = HUGE_VALF;
      
      // Rewrite register operands to use the new vreg.
      for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(),
           E = Indices.end(); I != E; ++I) {
        MI->getOperand(*I).setReg(NewVReg);
        
        if (MI->getOperand(*I).isUse())
          MI->getOperand(*I).setIsKill(true);
      }
      
      // Fill in  the new live interval.
      unsigned index = getInstructionIndex(MI);
      if (HasUse) {
        LiveRange LR(getLoadIndex(index), getUseIndex(index),
                     nI.getNextValue(~0U, 0, getVNInfoAllocator()));
        DOUT << " +" << LR;
        nI.addRange(LR);
        vrm.addRestorePoint(NewVReg, MI);
      }
      if (HasDef) {
        LiveRange LR(getDefIndex(index), getStoreIndex(index),
                     nI.getNextValue(~0U, 0, getVNInfoAllocator()));
        DOUT << " +" << LR;
        nI.addRange(LR);
        vrm.addSpillPoint(NewVReg, true, MI);
      }
      
Owen Anderson's avatar
Owen Anderson committed
      added.push_back(&nI);
      DOUT << "\t\t\t\tadded new interval: ";
      DEBUG(nI.dump());
      DOUT << '\n';
      
      unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
      if (HasUse) {
        if (HasDef)
          SSWeight += getSpillWeight(true, true, loopDepth);
        else
          SSWeight += getSpillWeight(false, true, loopDepth);
      } else
        SSWeight += getSpillWeight(true, false, loopDepth);
    }
Evan Cheng's avatar
Evan Cheng committed
std::vector<LiveInterval*> LiveIntervals::
Evan Cheng's avatar
Evan Cheng committed
addIntervalsForSpills(const LiveInterval &li,
                      SmallVectorImpl<LiveInterval*> &SpillIs,
                      const MachineLoopInfo *loopInfo, VirtRegMap &vrm,
                      float &SSWeight) {
  
  if (EnableFastSpilling)
    return addIntervalsForSpillsFast(li, loopInfo, vrm, SSWeight);
  
Evan Cheng's avatar
Evan Cheng committed
  assert(li.weight != HUGE_VALF &&
         "attempt to spill already spilled interval!");

  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
  li.print(DOUT, tri_);
Evan Cheng's avatar
Evan Cheng committed
  DOUT << '\n';

  // Spill slot weight.
  SSWeight = 0.0f;

Evan Cheng's avatar
Evan Cheng committed
  // Each bit specify whether a spill is required in the MBB.
Evan Cheng's avatar
Evan Cheng committed
  BitVector SpillMBBs(mf_->getNumBlockIDs());
  DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
  BitVector RestoreMBBs(mf_->getNumBlockIDs());
  DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
  DenseMap<unsigned,unsigned> MBBVRegsMap;
Evan Cheng's avatar
Evan Cheng committed
  std::vector<LiveInterval*> NewLIs;
  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
Evan Cheng's avatar
Evan Cheng committed

  unsigned NumValNums = li.getNumValNums();
  SmallVector<MachineInstr*, 4> ReMatDefs;
  ReMatDefs.resize(NumValNums, NULL);
  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
  ReMatOrigDefs.resize(NumValNums, NULL);
  SmallVector<int, 4> ReMatIds;
  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
  BitVector ReMatDelete(NumValNums);
  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;

Evan Cheng's avatar
Evan Cheng committed
  // Spilling a split live interval. It cannot be split any further. Also,
  // it's also guaranteed to be a single val# / range interval.
  if (vrm.getPreSplitReg(li.reg)) {
    vrm.setIsSplitFromReg(li.reg, 0);
    // Unset the split kill marker on the last use.
    unsigned KillIdx = vrm.getKillPoint(li.reg);
    if (KillIdx) {
      MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
      assert(KillMI && "Last use disappeared?");
      int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
      assert(KillOp != -1 && "Last use disappeared?");
      KillMI->getOperand(KillOp).setIsKill(false);
Evan Cheng's avatar
Evan Cheng committed
    bool DefIsReMat = vrm.isReMaterialized(li.reg);
    Slot = vrm.getStackSlot(li.reg);
    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
    MachineInstr *ReMatDefMI = DefIsReMat ?
      vrm.getReMaterializedMI(li.reg) : NULL;
    int LdSlot = 0;
    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
    bool isLoad = isLoadSS ||
      (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
Evan Cheng's avatar
Evan Cheng committed
    bool IsFirstRange = true;
    for (LiveInterval::Ranges::const_iterator
           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
      // If this is a split live interval with multiple ranges, it means there
      // are two-address instructions that re-defined the value. Only the
      // first def can be rematerialized!
      if (IsFirstRange) {
        // Note ReMatOrigDefMI has already been deleted.
Evan Cheng's avatar
Evan Cheng committed
        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                             MBBVRegsMap, NewLIs, SSWeight);
Evan Cheng's avatar
Evan Cheng committed
      } else {
        rewriteInstructionsForSpills(li, false, I, NULL, 0,
                             Slot, 0, false, false, false,
                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                             MBBVRegsMap, NewLIs, SSWeight);
Evan Cheng's avatar
Evan Cheng committed
      }
      IsFirstRange = false;
    }
    SSWeight = 0.0f;  // Already accounted for when split.
    handleSpilledImpDefs(li, vrm, rc, NewLIs);
Evan Cheng's avatar
Evan Cheng committed
    return NewLIs;
  }

  bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
  if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
    TrySplit = false;
  if (TrySplit)
    ++numSplits;
Evan Cheng's avatar
Evan Cheng committed
  bool NeedStackSlot = false;
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    unsigned VN = VNI->id;
    unsigned DefIdx = VNI->def;
    if (DefIdx == ~1U)
      continue; // Dead val#.
    // Is the def for the val# rematerializable?
Evan Cheng's avatar
Evan Cheng committed
    MachineInstr *ReMatDefMI = (DefIdx == ~0u)
      ? 0 : getInstructionFromIndex(DefIdx);
    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
Evan Cheng's avatar
Evan Cheng committed
      // Remember how to remat the def of this val#.
Evan Cheng's avatar
Evan Cheng committed
      ReMatOrigDefs[VN] = ReMatDefMI;
      // Original def may be modified so we have to make a copy here.
      MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
      ClonedMIs.push_back(Clone);
      ReMatDefs[VN] = Clone;
Evan Cheng's avatar
Evan Cheng committed

      bool CanDelete = true;
      if (VNI->hasPHIKill) {
        // A kill is a phi node, not all of its uses can be rematerialized.
Evan Cheng's avatar
Evan Cheng committed
        // It must not be deleted.
        CanDelete = false;
        // Need a stack slot if there is any live range where uses cannot be
        // rematerialized.
        NeedStackSlot = true;
Evan Cheng's avatar
Evan Cheng committed
      }
      if (CanDelete)
        ReMatDelete.set(VN);
    } else {
      // Need a stack slot if there is any live range where uses cannot be
      // rematerialized.
      NeedStackSlot = true;
    }
  }

  // One stack slot per live interval.
  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
    if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
      Slot = vrm.assignVirt2StackSlot(li.reg);
    
    // This case only occurs when the prealloc splitter has already assigned
    // a stack slot to this vreg.
    else
      Slot = vrm.getStackSlot(li.reg);
  }
Evan Cheng's avatar
Evan Cheng committed

  // Create new intervals and rewrite defs and uses.
  for (LiveInterval::Ranges::const_iterator
         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
Evan Cheng's avatar
Evan Cheng committed
    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
    bool DefIsReMat = ReMatDefMI != NULL;
Evan Cheng's avatar
Evan Cheng committed
    bool CanDelete = ReMatDelete[I->valno->id];
    int LdSlot = 0;
Evan Cheng's avatar
Evan Cheng committed
    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
Evan Cheng's avatar
Evan Cheng committed
    bool isLoad = isLoadSS ||
      (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
Evan Cheng's avatar
Evan Cheng committed
    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                               CanDelete, vrm, rc, ReMatIds, loopInfo,
                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                               MBBVRegsMap, NewLIs, SSWeight);
  // Insert spills / restores if we are splitting.
    handleSpilledImpDefs(li, vrm, rc, NewLIs);