Skip to content
MipsISelLowering.cpp 99 KiB
Newer Older
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "mips-lower"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;

// If I is a shifted mask, set the size (Size) and the first bit of the 
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).  
static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
  if (!isUInt<32>(I) || !isShiftedMask_32(I))
     return false;
  Size = CountPopulation_32(I);
  Pos = CountTrailingZeros_32(I);
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
  case MipsISD::Hi:                return "MipsISD::Hi";
  case MipsISD::Lo:                return "MipsISD::Lo";
  case MipsISD::GPRel:             return "MipsISD::GPRel";
  case MipsISD::TlsGd:             return "MipsISD::TlsGd";
  case MipsISD::TprelHi:           return "MipsISD::TprelHi";
  case MipsISD::TprelLo:           return "MipsISD::TprelLo";
  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
  case MipsISD::Ret:               return "MipsISD::Ret";
  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
  case MipsISD::FPRound:           return "MipsISD::FPRound";
  case MipsISD::MAdd:              return "MipsISD::MAdd";
  case MipsISD::MAddu:             return "MipsISD::MAddu";
  case MipsISD::MSub:              return "MipsISD::MSub";
  case MipsISD::MSubu:             return "MipsISD::MSubu";
  case MipsISD::DivRem:            return "MipsISD::DivRem";
  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
  case MipsISD::WrapperPIC:        return "MipsISD::WrapperPIC";
  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
  case MipsISD::Sync:              return "MipsISD::Sync";
  case MipsISD::Ext:               return "MipsISD::Ext";
  case MipsISD::Ins:               return "MipsISD::Ins";
Akira Hatanaka's avatar
Akira Hatanaka committed
  default:                         return NULL;
MipsTargetLowering(MipsTargetMachine &TM)
  : TargetLowering(TM, new MipsTargetObjectFile()) {
  Subtarget = &TM.getSubtarget<MipsSubtarget>();

  // Mips does not have i1 type, so use i32 for
  // setcc operations results (slt, sgt, ...).
  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?

  // Set up the register classes
  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
  addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
  // When dealing with single precision only, use libcalls
  if (!Subtarget->isSingleFloat())
      addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
  // Load extented operations for i1 types must be promoted
  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
  // MIPS doesn't have extending float->double load/store
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  // Used by legalize types to correctly generate the setcc result.
  // Without this, every float setcc comes with a AND/OR with the result,
  // we don't want this, since the fpcmp result goes to a flag register,
  // which is used implicitly by brcond and select operations.
  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
  // Mips Custom Operations
  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
  setOperationAction(ISD::VASTART,            MVT::Other, Custom);

  setOperationAction(ISD::SDIV, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIV, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);

  // Operations not directly supported by Mips.
  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
  if (!Subtarget->hasMips32r2())
    setOperationAction(ISD::ROTR, MVT::i32,   Expand);

  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Custom);
  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Custom);
  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
Akira Hatanaka's avatar
Akira Hatanaka committed
  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
  setOperationAction(ISD::VAEND,             MVT::Other, Expand);

  // Use the default for now
  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Custom);
  setOperationAction(ISD::ATOMIC_FENCE,      MVT::Other, Custom);  
  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);  
  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);  

  if (Subtarget->isSingleFloat())
    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
  if (!Subtarget->hasSEInReg()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  if (!Subtarget->hasBitCount())
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
  setTargetDAGCombine(ISD::ADDE);
  setTargetDAGCombine(ISD::SUBE);
  setTargetDAGCombine(ISD::SDIVREM);
  setTargetDAGCombine(ISD::UDIVREM);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setStackPointerRegisterToSaveRestore(Mips::SP);
  computeRegisterProperties();

  setExceptionPointerRegister(Mips::A0);
  setExceptionSelectorRegister(Mips::A1);
bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
  return SVT == MVT::i32 || SVT == MVT::i16; 
EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
// SelectMadd -
// Transforms a subgraph in CurDAG if the following pattern is found:
//  (addc multLo, Lo0), (adde multHi, Hi0),
// where,
//  multHi/Lo: product of multiplication
//  Lo0: initial value of Lo register
//  Hi0: initial value of Hi register
Akira Hatanaka's avatar
Akira Hatanaka committed
// Return true if pattern matching was successful.
static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
  // ADDENode's second operand must be a flag output of an ADDC node in order
  // for the matching to be successful.
  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();

  if (ADDCNode->getOpcode() != ISD::ADDC)
    return false;

  SDValue MultHi = ADDENode->getOperand(0);
  SDValue MultLo = ADDCNode->getOperand(0);
  unsigned MultOpc = MultHi.getOpcode();

  // MultHi and MultLo must be generated by the same node,
  if (MultLo.getNode() != MultNode)
    return false;

  // and it must be a multiplication.
  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    return false;

  // MultLo amd MultHi must be the first and second output of MultNode
  // respectively.
  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    return false;

  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
  // of the values of MultNode, in which case MultNode will be removed in later
  // phases.
  // If there exist users other than ADDENode or ADDCNode, this function returns
  // here, which will result in MultNode being mapped to a single MULT
  // instruction node rather than a pair of MULT and MADD instructions being
  // produced.
  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    return false;

  DebugLoc dl = ADDENode->getDebugLoc();

  // create MipsMAdd(u) node
  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
  SDValue MAdd = CurDAG->getNode(MultOpc, dl,
                                 MVT::Glue,
                                 MultNode->getOperand(0),// Factor 0
                                 MultNode->getOperand(1),// Factor 1
                                 ADDENode->getOperand(1));// Hi0

  // create CopyFromReg nodes
  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
                                              MAdd);
  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
                                              Mips::HI, MVT::i32,
                                              CopyFromLo.getValue(2));

  // replace uses of adde and addc here
  if (!SDValue(ADDCNode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);

  if (!SDValue(ADDENode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);

}

// SelectMsub -
// Transforms a subgraph in CurDAG if the following pattern is found:
//  (addc Lo0, multLo), (sube Hi0, multHi),
// where,
//  multHi/Lo: product of multiplication
//  Lo0: initial value of Lo register
//  Hi0: initial value of Hi register
Akira Hatanaka's avatar
Akira Hatanaka committed
// Return true if pattern matching was successful.
static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
  // SUBENode's second operand must be a flag output of an SUBC node in order
  // for the matching to be successful.
  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();

  if (SUBCNode->getOpcode() != ISD::SUBC)
    return false;

  SDValue MultHi = SUBENode->getOperand(1);
  SDValue MultLo = SUBCNode->getOperand(1);
  unsigned MultOpc = MultHi.getOpcode();

  // MultHi and MultLo must be generated by the same node,
  if (MultLo.getNode() != MultNode)
    return false;

  // and it must be a multiplication.
  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    return false;

  // MultLo amd MultHi must be the first and second output of MultNode
  // respectively.
  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    return false;

  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
  // of the values of MultNode, in which case MultNode will be removed in later
  // phases.
  // If there exist users other than SUBENode or SUBCNode, this function returns
  // here, which will result in MultNode being mapped to a single MULT
  // instruction node rather than a pair of MULT and MSUB instructions being
  // produced.
  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    return false;

  SDValue Chain = CurDAG->getEntryNode();
  DebugLoc dl = SUBENode->getDebugLoc();

  // create MipsSub(u) node
  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;

  SDValue MSub = CurDAG->getNode(MultOpc, dl,
                                 MVT::Glue,
                                 MultNode->getOperand(0),// Factor 0
                                 MultNode->getOperand(1),// Factor 1
                                 SUBCNode->getOperand(0),// Lo0
                                 SUBENode->getOperand(0));// Hi0

  // create CopyFromReg nodes
  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
                                              MSub);
  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
                                              Mips::HI, MVT::i32,
                                              CopyFromLo.getValue(2));

  // replace uses of sube and subc here
  if (!SDValue(SUBCNode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);

  if (!SDValue(SUBENode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);

  return true;
}

static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  if (Subtarget->hasMips32() && SelectMadd(N, &DAG))

static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  if (Subtarget->hasMips32() && SelectMsub(N, &DAG))
static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
                                                  MipsISD::DivRemU;
  DebugLoc dl = N->getDebugLoc();

  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
                               N->getOperand(0), N->getOperand(1));
  SDValue InChain = DAG.getEntryNode();
  SDValue InGlue = DivRem;

  // insert MFLO
  if (N->hasAnyUseOfValue(0)) {
    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, Mips::LO, MVT::i32,
                                            InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    InChain = CopyFromLo.getValue(1);
    InGlue = CopyFromLo.getValue(2);
  }

  // insert MFHI
  if (N->hasAnyUseOfValue(1)) {
    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
                                            Mips::HI, MVT::i32, InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
  }

  return SDValue();
}

static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
  switch (CC) {
  default: llvm_unreachable("Unknown fp condition code!");
  case ISD::SETEQ:
  case ISD::SETOEQ: return Mips::FCOND_OEQ;
  case ISD::SETUNE: return Mips::FCOND_UNE;
  case ISD::SETLT:
  case ISD::SETOLT: return Mips::FCOND_OLT;
  case ISD::SETGT:
  case ISD::SETOGT: return Mips::FCOND_OGT;
  case ISD::SETLE:
  case ISD::SETOLE: return Mips::FCOND_OLE;
  case ISD::SETGE:
  case ISD::SETOGE: return Mips::FCOND_OGE;
  case ISD::SETULT: return Mips::FCOND_ULT;
  case ISD::SETULE: return Mips::FCOND_ULE;
  case ISD::SETUGT: return Mips::FCOND_UGT;
  case ISD::SETUGE: return Mips::FCOND_UGE;
  case ISD::SETUO:  return Mips::FCOND_UN;
  case ISD::SETO:   return Mips::FCOND_OR;
  case ISD::SETNE:
  case ISD::SETONE: return Mips::FCOND_ONE;
  case ISD::SETUEQ: return Mips::FCOND_UEQ;
  }
}


// Returns true if condition code has to be inverted.
static bool InvertFPCondCode(Mips::CondCode CC) {
  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    return false;

  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
    return true;

  assert(false && "Illegal Condition Code");
  return false;
}

// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
  // must be a SETCC node
  if (Op.getOpcode() != ISD::SETCC)
    return Op;

  SDValue LHS = Op.getOperand(0);

  if (!LHS.getValueType().isFloatingPoint())
    return Op;

  SDValue RHS = Op.getOperand(1);
  DebugLoc dl = Op.getDebugLoc();

  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
  // node if necessary.
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();

  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
}

// Creates and returns a CMovFPT/F node.
static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
                            SDValue False, DebugLoc DL) {
  bool invert = InvertFPCondCode((Mips::CondCode)
                                 cast<ConstantSDNode>(Cond.getOperand(2))
                                 ->getSExtValue());

  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
                     True.getValueType(), True, False, Cond);
}

static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
                                   TargetLowering::DAGCombinerInfo &DCI,
                                   const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));

  if (Cond.getOpcode() != MipsISD::FPCmp)
    return SDValue();

  SDValue True  = DAG.getConstant(1, MVT::i32);
  SDValue False = DAG.getConstant(0, MVT::i32);

  return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
}

static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget* Subtarget) {
  // Pattern match EXT.
  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
  //  => ext $dst, $src, size, pos
  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
    return SDValue();

  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
  
  // Op's first operand must be a shift right.
  if (ShiftRight.getOpcode() != ISD::SRA && ShiftRight.getOpcode() != ISD::SRL)
    return SDValue();

  // The second operand of the shift must be an immediate.
  uint64_t Pos;
  ConstantSDNode *CN;
  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
    return SDValue();
  
  Pos = CN->getZExtValue();

  uint64_t SMPos, SMSize;
  // Op's second operand must be a shifted mask.
  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    return SDValue();

  // Return if the shifted mask does not start at bit 0 or the sum of its size
  // and Pos exceeds the word's size.
  if (SMPos != 0 || Pos + SMSize > 32)
    return SDValue();

  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), MVT::i32,
                     ShiftRight.getOperand(0),
                     DAG.getConstant(Pos, MVT::i32),
                     DAG.getConstant(SMSize, MVT::i32));
}
  
static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const MipsSubtarget* Subtarget) {
  // Pattern match INS.
  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1 
  //  => ins $dst, $src, size, pos, $src1
  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
    return SDValue();

  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
  ConstantSDNode *CN;

  // See if Op's first operand matches (and $src1 , mask0).
  if (And0.getOpcode() != ISD::AND)
    return SDValue();

  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    return SDValue();

  // See if Op's second operand matches (and (shl $src, pos), mask1).
  if (And1.getOpcode() != ISD::AND)
    return SDValue();
  
  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
    return SDValue();

  // The shift masks must have the same position and size.
  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
    return SDValue();

  SDValue Shl = And1.getOperand(0);
  if (Shl.getOpcode() != ISD::SHL)
    return SDValue();

  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
    return SDValue();

  unsigned Shamt = CN->getZExtValue();

  // Return if the shift amount and the first bit position of mask are not the
  // same.  
  if (Shamt != SMPos0)
    return SDValue();
  
  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), MVT::i32,
                     Shl.getOperand(0),
                     DAG.getConstant(SMPos0, MVT::i32),
                     DAG.getConstant(SMSize0, MVT::i32),
SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
  const {
  SelectionDAG &DAG = DCI.DAG;
  unsigned opc = N->getOpcode();

  switch (opc) {
  default: break;
  case ISD::ADDE:
    return PerformADDECombine(N, DAG, DCI, Subtarget);
  case ISD::SUBE:
    return PerformSUBECombine(N, DAG, DCI, Subtarget);
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
  case ISD::SETCC:
    return PerformSETCCCombine(N, DAG, DCI, Subtarget);
  case ISD::AND:
    return PerformANDCombine(N, DAG, DCI, Subtarget);
  case ISD::OR:
    return PerformORCombine(N, DAG, DCI, Subtarget);
Dan Gohman's avatar
Dan Gohman committed
SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
    case ISD::SELECT:             return LowerSELECT(Op, DAG);
    case ISD::VASTART:            return LowerVASTART(Op, DAG);
    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
Dan Gohman's avatar
Dan Gohman committed
  return SDValue();
//===----------------------------------------------------------------------===//
//  Lower helper functions
//===----------------------------------------------------------------------===//

// AddLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value.  It also creates a corresponding
// virtual register for it.
static unsigned
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
{
  assert(RC->contains(PReg) && "Not the correct regclass!");
  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
  MF.getRegInfo().addLiveIn(PReg, VReg);
// Get fp branch code (not opcode) from condition code.
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    return Mips::BRANCH_T;

  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
    return Mips::BRANCH_F;

  return Mips::BRANCH_INVALID;
}
static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
                                        DebugLoc dl,
                                        const MipsSubtarget* Subtarget,
                                        const TargetInstrInfo *TII,
                                        bool isFPCmp, unsigned Opc) {
  // There is no need to expand CMov instructions if target has
  // conditional moves.
  if (Subtarget->hasCondMov())
    return BB;

  // To "insert" a SELECT_CC instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = BB;
  ++It;

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  // Emit the right instruction according to the type of the operands compared
  if (isFPCmp)
    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
  else
    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
      .addReg(Mips::ZERO).addMBB(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  if (isFPCmp)
    BuildMI(*BB, BB->begin(), dl,
            TII->get(Mips::PHI), MI->getOperand(0).getReg())
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
  else
    BuildMI(*BB, BB->begin(), dl,
            TII->get(Mips::PHI), MI->getOperand(0).getReg())
      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                                MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc dl = MI->getDebugLoc();

  switch (MI->getOpcode()) {
  default:
    assert(false && "Unexpected instr type to insert");
    return NULL;
  case Mips::MOVT:
  case Mips::MOVT_S:
  case Mips::MOVT_D:
    return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1F);
  case Mips::MOVF:
  case Mips::MOVF_S:
  case Mips::MOVF_D:
    return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1T);
  case Mips::MOVZ_I:
  case Mips::MOVZ_S:
  case Mips::MOVZ_D:
    return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BNE);
  case Mips::MOVN_I:
  case Mips::MOVN_S:
  case Mips::MOVN_D:
    return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BEQ);

  case Mips::ATOMIC_LOAD_ADD_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
  case Mips::ATOMIC_LOAD_ADD_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
  case Mips::ATOMIC_LOAD_ADD_I32:
    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);

  case Mips::ATOMIC_LOAD_AND_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
  case Mips::ATOMIC_LOAD_AND_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
  case Mips::ATOMIC_LOAD_AND_I32:
    return EmitAtomicBinary(MI, BB, 4, Mips::AND);

  case Mips::ATOMIC_LOAD_OR_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
  case Mips::ATOMIC_LOAD_OR_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
  case Mips::ATOMIC_LOAD_OR_I32:
    return EmitAtomicBinary(MI, BB, 4, Mips::OR);

  case Mips::ATOMIC_LOAD_XOR_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
  case Mips::ATOMIC_LOAD_XOR_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
  case Mips::ATOMIC_LOAD_XOR_I32:
    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);

  case Mips::ATOMIC_LOAD_NAND_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
  case Mips::ATOMIC_LOAD_NAND_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
  case Mips::ATOMIC_LOAD_NAND_I32:
    return EmitAtomicBinary(MI, BB, 4, 0, true);

  case Mips::ATOMIC_LOAD_SUB_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
  case Mips::ATOMIC_LOAD_SUB_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
  case Mips::ATOMIC_LOAD_SUB_I32:
    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);

  case Mips::ATOMIC_SWAP_I8:
    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
  case Mips::ATOMIC_SWAP_I16:
    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
  case Mips::ATOMIC_SWAP_I32:
    return EmitAtomicBinary(MI, BB, 4, 0);

  case Mips::ATOMIC_CMP_SWAP_I8:
    return EmitAtomicCmpSwapPartword(MI, BB, 1);
  case Mips::ATOMIC_CMP_SWAP_I16:
    return EmitAtomicCmpSwapPartword(MI, BB, 2);
  case Mips::ATOMIC_CMP_SWAP_I32:
    return EmitAtomicCmpSwap(MI, BB, 4);
  }
}

// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
Akira Hatanaka's avatar
Akira Hatanaka committed
                                     bool Nand) const {
  assert(Size == 4 && "Unsupported size for EmitAtomicBinary.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc dl = MI->getDebugLoc();

  unsigned OldVal = MI->getOperand(0).getReg();
  unsigned Ptr = MI->getOperand(1).getReg();
  unsigned Incr = MI->getOperand(2).getReg();

  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
  unsigned AndRes = RegInfo.createVirtualRegister(RC);
  unsigned Success = RegInfo.createVirtualRegister(RC);

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = BB;
  ++It;
  MF->insert(It, loopMBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  //  thisMBB:
  //    ...
  //    fallthrough --> loopMBB
  BB->addSuccessor(loopMBB);
  loopMBB->addSuccessor(loopMBB);
  loopMBB->addSuccessor(exitMBB);
  //    <binop> storeval, oldval, incr
  //    sc success, storeval, 0(ptr)
  //    beq success, $0, loopMBB
  BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(Ptr).addImm(0);
    //  and andres, oldval, incr
    //  nor storeval, $0, andres
    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr);
    BuildMI(BB, dl, TII->get(Mips::NOR), StoreVal)
      .addReg(Mips::ZERO).addReg(AndRes);
    //  <binop> storeval, oldval, incr
    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
    StoreVal = Incr;
  BuildMI(BB, dl, TII->get(Mips::SC), Success)
    .addReg(StoreVal).addReg(Ptr).addImm(0);
    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);

  MI->eraseFromParent();   // The instruction is gone now.

}

MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
Akira Hatanaka's avatar
Akira Hatanaka committed
                                             MachineBasicBlock *BB,
                                             unsigned Size, unsigned BinOpcode,
                                             bool Nand) const {
  assert((Size == 1 || Size == 2) &&
      "Unsupported size for EmitAtomicBinaryPartial.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc dl = MI->getDebugLoc();

  unsigned Dest = MI->getOperand(0).getReg();
  unsigned Ptr = MI->getOperand(1).getReg();
  unsigned Incr = MI->getOperand(2).getReg();

  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
  unsigned Mask = RegInfo.createVirtualRegister(RC);
  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
  unsigned NewVal = RegInfo.createVirtualRegister(RC);
  unsigned OldVal = RegInfo.createVirtualRegister(RC);
  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
  unsigned AndRes = RegInfo.createVirtualRegister(RC);
  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
Akira Hatanaka's avatar
Akira Hatanaka committed
  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
  unsigned SllRes = RegInfo.createVirtualRegister(RC);
  unsigned Success = RegInfo.createVirtualRegister(RC);

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = BB;
  ++It;
  MF->insert(It, loopMBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(loopMBB);
  loopMBB->addSuccessor(loopMBB);
  loopMBB->addSuccessor(sinkMBB);
  sinkMBB->addSuccessor(exitMBB);

  //    addiu   masklsb2,$0,-4                # 0xfffffffc
  //    and     alignedaddr,ptr,masklsb2
  //    andi    ptrlsb2,ptr,3
  //    sll     shiftamt,ptrlsb2,3
  //    ori     maskupper,$0,255               # 0xff
  //    sll     mask,maskupper,shiftamt
  //    sll     incr2,incr,shiftamt

  int64_t MaskImm = (Size == 1) ? 255 : 65535;
  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
    .addReg(Mips::ZERO).addImm(-4);
  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
    .addReg(Ptr).addReg(MaskLSB2);
  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);