Newer
Older
continue;
}
ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
} else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
if (LD->getType() != LI->getType()) {
UnavailableBlocks.push_back(DepBB);
continue;
}
ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
UnavailableBlocks.push_back(DepBB);
continue;
// If we have no predecessors that produce a known value for this load, exit
// early.
if (ValuesPerBlock.empty()) return false;
// If all of the instructions we depend on produce a known value for this
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
// Use cached PHI construction information from previous runs
SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
// FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
I != E; ++I) {
if ((*I)->getParent() == LI->getParent()) {
DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
LI->replaceAllUsesWith(*I);
if (isa<PointerType>((*I)->getType()))
MD->invalidateCachedPointerInfo(*I);
toErase.push_back(LI);
NumGVNLoad++;
return true;
}
ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI);
DenseMap<BasicBlock*, Value*> BlockReplValues;
BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
// Perform PHI construction.
Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
LI->replaceAllUsesWith(v);
if (isa<PHINode>(v))
v->takeName(LI);
if (isa<PointerType>(v->getType()))
MD->invalidateCachedPointerInfo(v);
toErase.push_back(LI);
NumGVNLoad++;
return true;
if (!EnablePRE || !EnableLoadPRE)
return false;
// Okay, we have *some* definitions of the value. This means that the value
// is available in some of our (transitive) predecessors. Lets think about
// doing PRE of this load. This will involve inserting a new load into the
// predecessor when it's not available. We could do this in general, but
// prefer to not increase code size. As such, we only do this when we know
// that we only have to insert *one* load (which means we're basically moving
// the load, not inserting a new one).
Owen Anderson
committed
SmallPtrSet<BasicBlock *, 4> Blockers;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
Blockers.insert(UnavailableBlocks[i]);
// Lets find first basic block with more than one predecessor. Walk backwards
// through predecessors if needed.
BasicBlock *LoadBB = LI->getParent();
Owen Anderson
committed
BasicBlock *TmpBB = LoadBB;
bool isSinglePred = false;
bool allSingleSucc = true;
Owen Anderson
committed
while (TmpBB->getSinglePredecessor()) {
isSinglePred = true;
TmpBB = TmpBB->getSinglePredecessor();
if (!TmpBB) // If haven't found any, bail now.
return false;
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
return false;
if (Blockers.count(TmpBB))
return false;
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
allSingleSucc = false;
Owen Anderson
committed
}
assert(TmpBB);
LoadBB = TmpBB;
// If we have a repl set with LI itself in it, this means we have a loop where
// at least one of the values is LI. Since this means that we won't be able
// to eliminate LI even if we insert uses in the other predecessors, we will
// end up increasing code size. Reject this by scanning for LI.
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
if (ValuesPerBlock[i].second == LI)
return false;
Owen Anderson
committed
if (isSinglePred) {
bool isHot = false;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
// "Hot" Instruction is in some loop (because it dominates its dep.
// instruction).
if (DT->dominates(LI, I)) {
isHot = true;
break;
}
// We are interested only in "hot" instructions. We don't want to do any
// mis-optimizations here.
if (!isHot)
return false;
}
// Okay, we have some hope :). Check to see if the loaded value is fully
// available in all but one predecessor.
// FIXME: If we could restructure the CFG, we could make a common pred with
// all the preds that don't have an available LI and insert a new load into
// that one block.
BasicBlock *UnavailablePred = 0;
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
PI != E; ++PI) {
if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
continue;
// If this load is not available in multiple predecessors, reject it.
if (UnavailablePred && UnavailablePred != *PI)
return false;
UnavailablePred = *PI;
}
assert(UnavailablePred != 0 &&
"Fully available value should be eliminated above!");
// If the loaded pointer is PHI node defined in this block, do PHI translation
// to get its value in the predecessor.
Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
// Make sure the value is live in the predecessor. If it was defined by a
// non-PHI instruction in this block, we don't know how to recompute it above.
if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
Daniel Dunbar
committed
DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
<< *LPInst << *LI << "\n");
return false;
}
// We don't currently handle critical edges :(
if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
Daniel Dunbar
committed
DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
<< UnavailablePred->getName() << "': " << *LI);
return false;
}
// Make sure it is valid to move this load here. We have to watch out for:
// @1 = getelementptr (i8* p, ...
// test p and branch if == 0
// load @1
// It is valid to have the getelementptr before the test, even if p can be 0,
// as getelementptr only does address arithmetic.
// If we are not pushing the value through any multiple-successor blocks
// we do not have this case. Otherwise, check that the load is safe to
// put anywhere; this can be improved, but should be conservatively safe.
if (!allSingleSucc &&
!isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
return false;
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI);
Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
Owen Anderson
committed
SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
I != E; ++I)
ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
DenseMap<BasicBlock*, Value*> BlockReplValues;
BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
BlockReplValues[UnavailablePred] = NewLoad;
// Perform PHI construction.
Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
LI->replaceAllUsesWith(v);
if (isa<PHINode>(v))
v->takeName(LI);
if (isa<PointerType>(v->getType()))
MD->invalidateCachedPointerInfo(v);
toErase.push_back(LI);
NumPRELoad++;
return true;
}
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (L->isVolatile())
Owen Anderson
committed
return false;
Value* pointer = L->getPointerOperand();
Owen Anderson
committed
// ... to a pointer that has been loaded from before...
MemDepResult dep = MD->getDependency(L);
// If the value isn't available, don't do anything!
if (dep.isClobber()) {
DEBUG(
// fast print dep, using operator<< on instruction would be too slow
errs() << "GVN: load ";
WriteAsOperand(errs(), L);
Instruction *I = dep.getInst();
errs() << " is clobbered by " << *I;
);
}
// If it is defined in another block, try harder.
return processNonLocalLoad(L, toErase);
Instruction *DepInst = dep.getInst();
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
// Only forward substitute stores to loads of the same type.
// FIXME: Could do better!
if (DepSI->getPointerOperand()->getType() != pointer->getType())
return false;
Owen Anderson
committed
// Remove it!
L->replaceAllUsesWith(DepSI->getOperand(0));
if (isa<PointerType>(DepSI->getOperand(0)->getType()))
MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
toErase.push_back(L);
NumGVNLoad++;
return true;
}
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
// Only forward substitute stores to loads of the same type.
// FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
if (DepLI->getType() != L->getType())
return false;
Owen Anderson
committed
// Remove it!
L->replaceAllUsesWith(DepLI);
if (isa<PointerType>(DepLI->getType()))
MD->invalidateCachedPointerInfo(DepLI);
toErase.push_back(L);
NumGVNLoad++;
return true;
Owen Anderson
committed
}
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
if (isa<AllocationInst>(DepInst)) {
L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
NumGVNLoad++;
}
Owen Anderson
committed
}
Owen Anderson
committed
Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
Owen Anderson
committed
DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
if (I == localAvail.end())
return 0;
ValueNumberScope* locals = I->second;
Owen Anderson
committed
while (locals) {
DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
if (I != locals->table.end())
return I->second;
else
locals = locals->parent;
}
return 0;
}
Owen Anderson
committed
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
/// by inheritance from the dominator fails, see if we can perform phi
/// construction to eliminate the redundancy.
Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
BasicBlock* BaseBlock = orig->getParent();
SmallPtrSet<BasicBlock*, 4> Visited;
SmallVector<BasicBlock*, 8> Stack;
Stack.push_back(BaseBlock);
DenseMap<BasicBlock*, Value*> Results;
// Walk backwards through our predecessors, looking for instances of the
// value number we're looking for. Instances are recorded in the Results
// map, which is then used to perform phi construction.
while (!Stack.empty()) {
BasicBlock* Current = Stack.back();
Stack.pop_back();
// If we've walked all the way to a proper dominator, then give up. Cases
// where the instance is in the dominator will have been caught by the fast
// path, and any cases that require phi construction further than this are
// probably not worth it anyways. Note that this is a SIGNIFICANT compile
// time improvement.
if (DT->properlyDominates(Current, orig->getParent())) return 0;
DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
localAvail.find(Current);
if (LA == localAvail.end()) return 0;
DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
Owen Anderson
committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
if (V != LA->second->table.end()) {
// Found an instance, record it.
Results.insert(std::make_pair(Current, V->second));
continue;
}
// If we reach the beginning of the function, then give up.
if (pred_begin(Current) == pred_end(Current))
return 0;
for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
PI != PE; ++PI)
if (Visited.insert(*PI))
Stack.push_back(*PI);
}
// If we didn't find instances, give up. Otherwise, perform phi construction.
if (Results.size() == 0)
return 0;
else
return GetValueForBlock(BaseBlock, orig, Results, true);
}
Owen Anderson
committed
/// processInstruction - When calculating availability, handle an instruction
Owen Anderson
committed
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase) {
Owen Anderson
committed
if (LoadInst* L = dyn_cast<LoadInst>(I)) {
bool changed = processLoad(L, toErase);
Owen Anderson
committed
if (!changed) {
unsigned num = VN.lookup_or_add(L);
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
Owen Anderson
committed
}
return changed;
}
Owen Anderson
committed
uint32_t nextNum = VN.getNextUnusedValueNumber();
Owen Anderson
committed
unsigned num = VN.lookup_or_add(I);
Chris Lattner
committed
if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
return false;
Value* branchCond = BI->getCondition();
uint32_t condVN = VN.lookup_or_add(branchCond);
BasicBlock* trueSucc = BI->getSuccessor(0);
BasicBlock* falseSucc = BI->getSuccessor(1);
if (trueSucc->getSinglePredecessor())
localAvail[trueSucc]->table[condVN] =
ConstantInt::getTrue(trueSucc->getContext());
if (falseSucc->getSinglePredecessor())
localAvail[falseSucc]->table[condVN] =
ConstantInt::getFalse(trueSucc->getContext());
return false;
Owen Anderson
committed
// Allocations are always uniquely numbered, so we can save time and memory
// by fast failing them.
} else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
return false;
Owen Anderson
committed
}
Owen Anderson
committed
Owen Anderson
committed
if (PHINode* p = dyn_cast<PHINode>(I)) {
Value* constVal = CollapsePhi(p);
Owen Anderson
committed
if (constVal) {
for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
PI != PE; ++PI)
Owen Anderson
committed
p->replaceAllUsesWith(constVal);
if (isa<PointerType>(constVal->getType()))
MD->invalidateCachedPointerInfo(constVal);
Owen Anderson
committed
VN.erase(p);
Owen Anderson
committed
} else {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
}
Owen Anderson
committed
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
} else if (num == nextNum) {
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
// Perform fast-path value-number based elimination of values inherited from
// dominators.
Owen Anderson
committed
} else if (Value* repl = lookupNumber(I->getParent(), num)) {
Owen Anderson
committed
// Remove it!
Owen Anderson
committed
I->replaceAllUsesWith(repl);
if (isa<PointerType>(repl->getType()))
MD->invalidateCachedPointerInfo(repl);
Owen Anderson
committed
toErase.push_back(I);
return true;
Owen Anderson
committed
#if 0
// Perform slow-pathvalue-number based elimination with phi construction.
} else if (Value* repl = AttemptRedundancyElimination(I, num)) {
// Remove it!
VN.erase(I);
I->replaceAllUsesWith(repl);
if (isa<PointerType>(repl->getType()))
MD->invalidateCachedPointerInfo(repl);
toErase.push_back(I);
return true;
#endif
Owen Anderson
committed
} else {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
}
return false;
}
/// runOnFunction - This is the main transformation entry point for a function.
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
bool changed = false;
bool shouldContinue = true;
Owen Anderson
committed
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
BasicBlock* BB = FI;
++FI;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) NumGVNBlocks++;
changed |= removedBlock;
Owen Anderson
committed
}
DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
shouldContinue = iterateOnFunction(F);
changed |= shouldContinue;
Owen Anderson
committed
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
Owen Anderson
committed
changed |= PREChanged;
Owen Anderson
committed
}
// FIXME: Should perform GVN again after PRE does something. PRE can move
// computations into blocks where they become fully redundant. Note that
// we can't do this until PRE's critical edge splitting updates memdep.
// Actually, when this happens, we should just fully integrate PRE into GVN.
cleanupGlobalSets();
Owen Anderson
committed
bool GVN::processBlock(BasicBlock* BB) {
// FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
// incrementing BI before processing an instruction).
SmallVector<Instruction*, 8> toErase;
bool changed_function = false;
Owen Anderson
committed
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
changed_function |= processInstruction(BI, toErase);
if (toErase.empty()) {
++BI;
continue;
}
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
DEBUG(errs() << "GVN removed: " << **I);
MD->removeInstruction(*I);
if (AtStart)
BI = BB->begin();
else
++BI;
}
return changed_function;
}
Owen Anderson
committed
/// performPRE - Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function& F) {
Chris Lattner
committed
bool Changed = false;
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
DenseMap<BasicBlock*, Value*> predMap;
Owen Anderson
committed
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock* CurrentBlock = *DI;
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
Chris Lattner
committed
Instruction *CurInst = BI++;
Chris Lattner
committed
if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
isa<DbgInfoIntrinsic>(CurInst))
Owen Anderson
committed
continue;
Chris Lattner
committed
uint32_t valno = VN.lookup(CurInst);
Owen Anderson
committed
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
unsigned numWith = 0;
unsigned numWithout = 0;
BasicBlock* PREPred = 0;
predMap.clear();
Owen Anderson
committed
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
// We're not interested in PRE where the block is its
Owen Anderson
committed
// own predecessor, on in blocks with predecessors
// that are not reachable.
if (*PI == CurrentBlock) {
Owen Anderson
committed
numWithout = 2;
Owen Anderson
committed
break;
} else if (!localAvail.count(*PI)) {
numWithout = 2;
break;
}
DenseMap<uint32_t, Value*>::iterator predV =
localAvail[*PI]->table.find(valno);
if (predV == localAvail[*PI]->table.end()) {
Owen Anderson
committed
PREPred = *PI;
numWithout++;
Chris Lattner
committed
} else if (predV->second == CurInst) {
Owen Anderson
committed
numWithout = 2;
} else {
Owen Anderson
committed
predMap[*PI] = predV->second;
Owen Anderson
committed
numWith++;
}
}
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
Chris Lattner
committed
if (numWithout != 1 || numWith == 0)
Owen Anderson
committed
continue;
// We can't do PRE safely on a critical edge, so instead we schedule
// the edge to be split and perform the PRE the next time we iterate
// on the function.
unsigned succNum = 0;
for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
i != e; ++i)
if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
succNum = i;
break;
}
if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
continue;
}
Owen Anderson
committed
// Instantiate the expression the in predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
Instruction* PREInstr = CurInst->clone(CurInst->getContext());
Owen Anderson
committed
bool success = true;
Chris Lattner
committed
for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
Value *Op = PREInstr->getOperand(i);
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
continue;
if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
PREInstr->setOperand(i, V);
} else {
success = false;
break;
Owen Anderson
committed
}
// Fail out if we encounter an operand that is not available in
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
Owen Anderson
committed
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
Chris Lattner
committed
PREInstr->setName(CurInst->getName() + ".pre");
Owen Anderson
committed
predMap[PREPred] = PREInstr;
Owen Anderson
committed
VN.add(PREInstr, valno);
NumGVNPRE++;
// Update the availability map to include the new instruction.
Owen Anderson
committed
localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
Owen Anderson
committed
// Create a PHI to make the value available in this block.
Chris Lattner
committed
PHINode* Phi = PHINode::Create(CurInst->getType(),
CurInst->getName() + ".pre-phi",
Owen Anderson
committed
CurrentBlock->begin());
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI)
Owen Anderson
committed
Phi->addIncoming(predMap[*PI], *PI);
Owen Anderson
committed
VN.add(Phi, valno);
Owen Anderson
committed
localAvail[CurrentBlock]->table[valno] = Phi;
Owen Anderson
committed
Chris Lattner
committed
CurInst->replaceAllUsesWith(Phi);
if (isa<PointerType>(Phi->getType()))
MD->invalidateCachedPointerInfo(Phi);
Chris Lattner
committed
VN.erase(CurInst);
Owen Anderson
committed
DEBUG(errs() << "GVN PRE removed: " << *CurInst);
Chris Lattner
committed
MD->removeInstruction(CurInst);
CurInst->eraseFromParent();
Chris Lattner
committed
Changed = true;
Owen Anderson
committed
}
}
for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
Anton Korobeynikov
committed
I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
SplitCriticalEdge(I->first, I->second, this);
Anton Korobeynikov
committed
return Changed || toSplit.size();
Owen Anderson
committed
}
/// iterateOnFunction - Executes one iteration of GVN
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
if (DI->getIDom())
localAvail[DI->getBlock()] =
new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
else
localAvail[DI->getBlock()] = new ValueNumberScope(0);
}
Owen Anderson
committed
// Top-down walk of the dominator tree
Owen Anderson
committed
bool changed = false;
#if 0
// Needed for value numbering with phi construction to work.
Owen Anderson
committed
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
RE = RPOT.end(); RI != RE; ++RI)
changed |= processBlock(*RI);
#else
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI)
changed |= processBlock(DI->getBlock());
#endif
Owen Anderson
committed
return changed;
Owen Anderson
committed
}
void GVN::cleanupGlobalSets() {
VN.clear();
phiMap.clear();
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
delete I->second;
localAvail.clear();
}
Bill Wendling
committed
/// verifyRemoved - Verify that the specified instruction does not occur in our
/// internal data structures.
void GVN::verifyRemoved(const Instruction *Inst) const {
VN.verifyRemoved(Inst);
// Walk through the PHI map to make sure the instruction isn't hiding in there
// somewhere.
for (PhiMapType::iterator
I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
assert(I->first != Inst && "Inst is still a key in PHI map!");
for (SmallPtrSet<Instruction*, 4>::iterator
II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
assert(*II != Inst && "Inst is still a value in PHI map!");
}
}
// Walk through the value number scope to make sure the instruction isn't
// ferreted away in it.
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
const ValueNumberScope *VNS = I->second;
while (VNS) {
for (DenseMap<uint32_t, Value*>::iterator
II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
assert(II->second != Inst && "Inst still in value numbering scope!");
}
VNS = VNS->parent;
}
}