Newer
Older
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
Owen Anderson
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Owen Anderson
committed
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal. Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//
Owen Anderson
committed
#include "llvm/Transforms/Scalar.h"
Owen Anderson
committed
#include "llvm/Constants.h"
Owen Anderson
committed
#include "llvm/Function.h"
#include "llvm/Instructions.h"
Owen Anderson
committed
#include "llvm/IntrinsicInst.h"
Owen Anderson
committed
#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
Owen Anderson
committed
#include "llvm/Analysis/AliasAnalysis.h"
Owen Anderson
committed
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/MemoryBuiltins.h"
Owen Anderson
committed
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
Owen Anderson
committed
#include "llvm/Target/TargetData.h"
Owen Anderson
committed
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");
namespace {
struct DSE : public FunctionPass {
AliasAnalysis *AA;
MemoryDependenceAnalysis *MD;
Owen Anderson
committed
static char ID; // Pass identification, replacement for typeid
DSE() : FunctionPass(ID), AA(0), MD(0) {
Owen Anderson
committed
initializeDSEPass(*PassRegistry::getPassRegistry());
}
Owen Anderson
committed
virtual bool runOnFunction(Function &F) {
AA = &getAnalysis<AliasAnalysis>();
MD = &getAnalysis<MemoryDependenceAnalysis>();
DominatorTree &DT = getAnalysis<DominatorTree>();
bool Changed = false;
Owen Anderson
committed
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
// Only check non-dead blocks. Dead blocks may have strange pointer
// cycles that will confuse alias analysis.
if (DT.isReachableFromEntry(I))
Changed |= runOnBasicBlock(*I);
AA = 0; MD = 0;
Owen Anderson
committed
return Changed;
}
Owen Anderson
committed
bool runOnBasicBlock(BasicBlock &BB);
bool HandleFree(CallInst *F);
bool handleEndBlock(BasicBlock &BB);
void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
SmallPtrSet<Value*, 16> &DeadStackObjects);
Owen Anderson
committed
// getAnalysisUsage - We require post dominance frontiers (aka Control
// Dependence Graph)
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Owen Anderson
committed
AU.addRequired<DominatorTree>();
Owen Anderson
committed
AU.addRequired<AliasAnalysis>();
Owen Anderson
committed
AU.addRequired<MemoryDependenceAnalysis>();
AU.addPreserved<AliasAnalysis>();
Owen Anderson
committed
AU.addPreserved<DominatorTree>();
Owen Anderson
committed
AU.addPreserved<MemoryDependenceAnalysis>();
}
};
}
char DSE::ID = 0;
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
Owen Anderson
committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
/// DeleteDeadInstruction - Delete this instruction. Before we do, go through
/// and zero out all the operands of this instruction. If any of them become
/// dead, delete them and the computation tree that feeds them.
///
/// If ValueSet is non-null, remove any deleted instructions from it as well.
///
static void DeleteDeadInstruction(Instruction *I,
MemoryDependenceAnalysis &MD,
SmallPtrSet<Value*, 16> *ValueSet = 0) {
SmallVector<Instruction*, 32> NowDeadInsts;
NowDeadInsts.push_back(I);
--NumFastOther;
// Before we touch this instruction, remove it from memdep!
do {
Instruction *DeadInst = NowDeadInsts.pop_back_val();
++NumFastOther;
// This instruction is dead, zap it, in stages. Start by removing it from
// MemDep, which needs to know the operands and needs it to be in the
// function.
MD.removeInstruction(DeadInst);
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
Value *Op = DeadInst->getOperand(op);
DeadInst->setOperand(op, 0);
// If this operand just became dead, add it to the NowDeadInsts list.
if (!Op->use_empty()) continue;
if (Instruction *OpI = dyn_cast<Instruction>(Op))
if (isInstructionTriviallyDead(OpI))
NowDeadInsts.push_back(OpI);
}
DeadInst->eraseFromParent();
if (ValueSet) ValueSet->erase(DeadInst);
} while (!NowDeadInsts.empty());
}
/// hasMemoryWrite - Does this instruction write some memory? This only returns
/// true for things that we can analyze with other helpers below.
static bool hasMemoryWrite(Instruction *I) {
Nick Lewycky
committed
if (isa<StoreInst>(I))
return true;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default:
return false;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
case Intrinsic::init_trampoline:
case Intrinsic::lifetime_end:
return true;
Nick Lewycky
committed
}
}
return false;
}
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/// getLocForWrite - Return a Location stored to by the specified instruction.
static AliasAnalysis::Location
getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
return AA.getLocation(SI);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
// memcpy/memmove/memset.
AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
// If we don't have target data around, an unknown size in Location means
// that we should use the size of the pointee type. This isn't valid for
// memset/memcpy, which writes more than an i8.
if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
return AliasAnalysis::Location();
return Loc;
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
if (II == 0) return AliasAnalysis::Location();
switch (II->getIntrinsicID()) {
default: return AliasAnalysis::Location(); // Unhandled intrinsic.
case Intrinsic::init_trampoline:
// If we don't have target data around, an unknown size in Location means
// that we should use the size of the pointee type. This isn't valid for
// init.trampoline, which writes more than an i8.
if (AA.getTargetData() == 0) return AliasAnalysis::Location();
// FIXME: We don't know the size of the trampoline, so we can't really
// handle it here.
return AliasAnalysis::Location(II->getArgOperand(0));
case Intrinsic::lifetime_end: {
uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
return AliasAnalysis::Location(II->getArgOperand(1), Len);
}
}
}
/// isRemovable - If the value of this instruction and the memory it writes to
/// is unused, may we delete this instruction?
static bool isRemovable(Instruction *I) {
// Don't remove volatile stores.
Nick Lewycky
committed
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return !SI->isVolatile();
IntrinsicInst *II = cast<IntrinsicInst>(I);
switch (II->getIntrinsicID()) {
default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
case Intrinsic::lifetime_end:
// Never remove dead lifetime_end's, e.g. because it is followed by a
// free.
return false;
case Intrinsic::init_trampoline:
// Always safe to remove init_trampoline.
return true;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
// Don't remove volatile memory intrinsics.
return !cast<MemIntrinsic>(II)->isVolatile();
}
Nick Lewycky
committed
}
/// getStoredPointerOperand - Return the pointer that is being written to.
static Value *getStoredPointerOperand(Instruction *I) {
Nick Lewycky
committed
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
return MI->getDest();
Gabor Greif
committed
IntrinsicInst *II = cast<IntrinsicInst>(I);
switch (II->getIntrinsicID()) {
default: assert(false && "Unexpected intrinsic!");
case Intrinsic::init_trampoline:
Gabor Greif
committed
return II->getArgOperand(0);
Nick Lewycky
committed
}
static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
const TargetData *TD = AA.getTargetData();
if (TD == 0)
return AliasAnalysis::UnknownSize;
if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
// Get size information for the alloca
if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
return AliasAnalysis::UnknownSize;
}
assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
const PointerType *PT = cast<PointerType>(V->getType());
return TD->getTypeAllocSize(PT->getElementType());
}
/// isCompleteOverwrite - Return true if a store to the 'Later' location
/// completely overwrites a store to the 'Earlier' location.
static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
const AliasAnalysis::Location &Earlier,
const Value *P1 = Later.Ptr->stripPointerCasts();
const Value *P2 = Earlier.Ptr->stripPointerCasts();
// Make sure that the start pointers are the same.
if (P1 != P2)
return false;
Nick Lewycky
committed
// If we don't know the sizes of either access, then we can't do a comparison.
if (Later.Size == AliasAnalysis::UnknownSize ||
Earlier.Size == AliasAnalysis::UnknownSize) {
// If we have no TargetData information around, then the size of the store
// is inferrable from the pointee type. If they are the same type, then we
// know that the store is safe.
if (AA.getTargetData() == 0)
return Later.Ptr->getType() == Earlier.Ptr->getType();
return false;
}
// Make sure that the Later size is >= the Earlier size.
if (Later.Size < Earlier.Size)
return false;
return true;
//===----------------------------------------------------------------------===//
// DSE Pass
//===----------------------------------------------------------------------===//
Owen Anderson
committed
bool MadeChange = false;
// Do a top-down walk on the BB.
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
Instruction *Inst = BBI++;
// Handle 'free' calls specially.
if (CallInst *F = isFreeCall(Inst)) {
MadeChange |= HandleFree(F);
continue;
}
// If we find something that writes memory, get its memory dependence.
if (!hasMemoryWrite(Inst))
MemDepResult InstDep = MD->getDependency(Inst);
// Ignore non-local store liveness.
// FIXME: cross-block DSE would be fun. :)
if (InstDep.isNonLocal() ||
// Ignore self dependence, which happens in the entry block of the
// function.
InstDep.getInst() == Inst)
continue;
// If we're storing the same value back to a pointer that we just
// loaded from, then the store can be removed.
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
// DeleteDeadInstruction can delete the current instruction. Save BBI
// in case we need it.
WeakVH NextInst(BBI);
DeleteDeadInstruction(SI, *MD);
if (NextInst == 0) // Next instruction deleted.
BBI = BB.begin();
else if (BBI != BB.begin()) // Revisit this instruction if possible.
--BBI;
++NumFastStores;
MadeChange = true;
continue;
}
}
}
// Figure out what location is being stored to.
AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
// If we didn't get a useful location, fail.
if (Loc.Ptr == 0)
continue;
while (!InstDep.isNonLocal()) {
// Get the memory clobbered by the instruction we depend on. MemDep will
// skip any instructions that 'Loc' clearly doesn't interact with. If we
// end up depending on a may- or must-aliased load, then we can't optimize
// away the store and we bail out. However, if we depend on on something
// that overwrites the memory location we *can* potentially optimize it.
//
// Find out what memory location the dependant instruction stores.
Instruction *DepWrite = InstDep.getInst();
AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
// If we didn't get a useful location, or if it isn't a size, bail out.
if (DepLoc.Ptr == 0)
break;
// If we find a removable write that is completely obliterated by the
// store to 'Loc' then we can remove it.
if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA)) {
// Delete the store and now-dead instructions that feed it.
DeleteDeadInstruction(DepWrite, *MD);
++NumFastStores;
MadeChange = true;
// DeleteDeadInstruction can delete the current instruction in loop
// cases, reset BBI.
BBI = Inst;
if (BBI != BB.begin())
--BBI;
break;
}
// If this is a may-aliased store that is clobbering the store value, we
// can keep searching past it for another must-aliased pointer that stores
// to the same location. For example, in:
// store -> P
// store -> Q
// store -> P
// we can remove the first store to P even though we don't know if P and Q
// alias.
if (DepWrite == &BB.front()) break;
// Can't look past this instruction if it might read 'Loc'.
if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
Nick Lewycky
committed
}
Owen Anderson
committed
}
// If this block ends in a return, unwind, or unreachable, all allocas are
// dead at its end, which means stores to them are also dead.
Owen Anderson
committed
if (BB.getTerminator()->getNumSuccessors() == 0)
MadeChange |= handleEndBlock(BB);
Owen Anderson
committed
return MadeChange;
}
/// HandleFree - Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
bool DSE::HandleFree(CallInst *F) {
MemDepResult Dep = MD->getDependency(F);
if (Dep.isNonLocal()) return false;
Instruction *Dependency = Dep.getInst();
if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
return false;
Owen Anderson
committed
Value *DepPointer =
getStoredPointerOperand(Dependency)->getUnderlyingObject();
// Check for aliasing.
if (AA->alias(F->getArgOperand(0), 1, DepPointer, 1) !=
AliasAnalysis::MustAlias)
return false;
Owen Anderson
committed
// DCE instructions only used to calculate that store
DeleteDeadInstruction(Dependency, *MD);
++NumFastStores;
// Inst's old Dependency is now deleted. Compute the next dependency,
// which may also be dead, as in
// s[0] = 0;
// s[1] = 0; // This has just been deleted.
// free(s);
Dep = MD->getDependency(F);
} while (!Dep.isNonLocal());
Owen Anderson
committed
}
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block. Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock &BB) {
Owen Anderson
committed
bool MadeChange = false;
// Keep track of all of the stack objects that are dead at the end of the
// function.
SmallPtrSet<Value*, 16> DeadStackObjects;
Owen Anderson
committed
// Find all of the alloca'd pointers in the entry block.
Owen Anderson
committed
BasicBlock *Entry = BB.getParent()->begin();
for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
DeadStackObjects.insert(AI);
// Treat byval arguments the same, stores to them are dead at the end of the
// function.
Owen Anderson
committed
for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
AE = BB.getParent()->arg_end(); AI != AE; ++AI)
if (AI->hasByValAttr())
DeadStackObjects.insert(AI);
Owen Anderson
committed
// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
--BBI;
// If we find a store, check to see if it points into a dead stack value.
if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
// See through pointer-to-pointer bitcasts
Value *Pointer = getStoredPointerOperand(BBI)->getUnderlyingObject();
// Stores to stack values are valid candidates for removal.
if (DeadStackObjects.count(Pointer)) {
// DCE instructions only used to calculate that store.
Instruction *Dead = BBI++;
DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
++NumFastStores;
MadeChange = true;
Owen Anderson
committed
continue;
}
}
// Remove any dead non-memory-mutating instructions.
if (isInstructionTriviallyDead(BBI)) {
Instruction *Inst = BBI++;
DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
++NumFastOther;
MadeChange = true;
continue;
}
if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
DeadStackObjects.erase(A);
}
if (CallSite CS = cast<Value>(BBI)) {
// If this call does not access memory, it can't be loading any of our
// pointers.
if (AA->doesNotAccessMemory(CS))
Owen Anderson
committed
continue;
unsigned NumModRef = 0, NumOther = 0;
// If the call might load from any of our allocas, then any store above
// the call is live.
SmallVector<Value*, 8> LiveAllocas;
for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
E = DeadStackObjects.end(); I != E; ++I) {
// If we detect that our AA is imprecise, it's not worth it to scan the
// rest of the DeadPointers set. Just assume that the AA will return
// ModRef for everything, and go ahead and bail out.
if (NumModRef >= 16 && NumOther == 0)
return MadeChange;
// See if the call site touches it.
AliasAnalysis::ModRefResult A =
AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
if (A == AliasAnalysis::ModRef)
else
Owen Anderson
committed
if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
LiveAllocas.push_back(*I);
Owen Anderson
committed
}
for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
E = LiveAllocas.end(); I != E; ++I)
DeadStackObjects.erase(*I);
Owen Anderson
committed
// If all of the allocas were clobbered by the call then we're not going
// to find anything else to process.
if (DeadStackObjects.empty())
return MadeChange;
Owen Anderson
committed
continue;
AliasAnalysis::Location LoadedLoc;
// If we encounter a use of the pointer, it is no longer considered dead
if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
LoadedLoc = AA->getLocation(L);
} else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
LoadedLoc = AA->getLocation(V);
} else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
LoadedLoc = AA->getLocationForSource(MTI);
} else {
// Not a loading instruction.
Owen Anderson
committed
}
// Remove any allocas from the DeadPointer set that are loaded, as this
// makes any stores above the access live.
RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
// If all of the allocas were clobbered by the access then we're not going
// to find anything else to process.
if (DeadStackObjects.empty())
break;
Owen Anderson
committed
}
return MadeChange;
}
/// RemoveAccessedObjects - Check to see if the specified location may alias any
/// of the stack objects in the DeadStackObjects set. If so, they become live
/// because the location is being loaded.
void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
SmallPtrSet<Value*, 16> &DeadStackObjects) {
const Value *UnderlyingPointer = LoadedLoc.Ptr->getUnderlyingObject();
// A constant can't be in the dead pointer set.
if (isa<Constant>(UnderlyingPointer))
// If the kill pointer can be easily reduced to an alloca, don't bother doing
// extraneous AA queries.
if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
SmallVector<Value*, 16> NowLive;
for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
E = DeadStackObjects.end(); I != E; ++I) {
// See if the loaded location could alias the stack location.
AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
if (!AA->isNoAlias(StackLoc, LoadedLoc))
NowLive.push_back(*I);
Owen Anderson
committed
}
for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
Owen Anderson
committed
I != E; ++I)
DeadStackObjects.erase(*I);