Skip to content
LoopUnswitch.cpp 26.9 KiB
Newer Older
//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to have multiple loops.  For example, it turns the left into the right code:
//
//  for (...)                  if (lic)
//    A                          for (...)
//    if (lic)                     A; B; C
//      B                      else
//    C                          for (...)
//                                 A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-unswitch"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <iostream>
  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
  Statistic<> NumTrivial ("loop-unswitch",
                          "Number of unswitches that are trivial");
  cl::opt<unsigned>
  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
            cl::init(10), cl::Hidden);
  
  class LoopUnswitch : public FunctionPass {
    LoopInfo *LI;  // Loop information
  public:
    virtual bool runOnFunction(Function &F);
    bool visitLoop(Loop *L);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
    }

  private:
    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
    void VersionLoop(Value *LIC, Constant *OnVal,
                     Loop *L, Loop *&Out1, Loop *&Out2);
    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,Constant *Val,
                                              bool isEqual);
    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
  };
  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
}

FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }

bool LoopUnswitch::runOnFunction(Function &F) {
  bool Changed = false;
  LI = &getAnalysis<LoopInfo>();

  // Transform all the top-level loops.  Copy the loop list so that the child
  // can update the loop tree if it needs to delete the loop.
  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
    Changed |= visitLoop(SubLoops[i]);

  return Changed;
}

/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
/// the loop that are used by instructions outside of it.
static bool LoopValuesUsedOutsideLoop(Loop *L) {
  // We will be doing lots of "loop contains block" queries.  Loop::contains is
  // linear time, use a set to speed this up.
  std::set<BasicBlock*> LoopBlocks;

  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
       BB != E; ++BB)
    LoopBlocks.insert(*BB);
  
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
       BB != E; ++BB) {
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
           ++UI) {
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
        if (!LoopBlocks.count(UserBB))
          return true;
      }
  }
  return false;
}

/// FindTrivialLoopExitBlock - We know that we have a branch from the loop
/// header to the specified latch block.   See if one of the successors of the
/// latch block is an exit, and if so what block it is.
static BasicBlock *FindTrivialLoopExitBlock(Loop *L, BasicBlock *Latch) {
  BasicBlock *Header = L->getHeader();
  BranchInst *LatchBranch = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBranch || !LatchBranch->isConditional()) return 0;
  
  // Simple case, the latch block is a conditional branch.  The target that
  // doesn't go to the loop header is our block if it is not in the loop.
  if (LatchBranch->getSuccessor(0) == Header) {
    if (L->contains(LatchBranch->getSuccessor(1))) return false;
    return LatchBranch->getSuccessor(1);
  } else {
    assert(LatchBranch->getSuccessor(1) == Header);
    if (L->contains(LatchBranch->getSuccessor(0))) return false;
    return LatchBranch->getSuccessor(0);
  }
}


/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
/// trivial: that is, that the condition controls whether or not the loop does
/// anything at all.  If this is a trivial condition, unswitching produces no
/// code duplications (equivalently, it produces a simpler loop and a new empty
/// loop, which gets deleted).
///
/// If this is a trivial condition, return ConstantBool::True if the loop body
/// runs when the condition is true, False if the loop body executes when the
/// condition is false.  Otherwise, return null to indicate a complex condition.
static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
                                       Constant **Val = 0,
                                       BasicBlock **LoopExit = 0) {
  BasicBlock *Header = L->getHeader();
  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
  
  // If the header block doesn't end with a conditional branch on Cond, we can't
  // handle it.
  if (!HeaderTerm || !HeaderTerm->isConditional() ||
      HeaderTerm->getCondition() != Cond)
  
  // Check to see if the conditional branch goes to the latch block.  If not,
  // it's not trivial.  This also determines the value of Cond that will execute
  // the loop.
  BasicBlock *Latch = L->getLoopLatch();
  if (HeaderTerm->getSuccessor(1) == Latch) {
    if (Val) *Val = ConstantBool::True;
  } else if (HeaderTerm->getSuccessor(0) == Latch)
    if (Val) *Val = ConstantBool::False;
    return false;  // Doesn't branch to latch block.
  
  // The latch block must end with a conditional branch where one edge goes to
  // the header (this much we know) and one edge goes OUT of the loop.
  BasicBlock *LoopExitBlock = FindTrivialLoopExitBlock(L, Latch);
  if (!LoopExitBlock) return 0;
  if (LoopExit) *LoopExit = LoopExitBlock;
  
  // We already know that nothing uses any scalar values defined inside of this
  // loop.  As such, we just have to check to see if this loop will execute any
  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
  // part of the loop that the code *would* execute.
  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
    if (I->mayWriteToMemory())
  for (BasicBlock::iterator I = Latch->begin(), E = Latch->end(); I != E; ++I)
    if (I->mayWriteToMemory())
}

/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
/// we choose to unswitch the specified loop on the specified value.
///
unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
  // If the condition is trivial, always unswitch.  There is no code growth for
  // this case.
  if (IsTrivialUnswitchCondition(L, LIC))
    return 0;
  
  unsigned Cost = 0;
  // FIXME: this is brain dead.  It should take into consideration code
  // shrinkage.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I) {
    BasicBlock *BB = *I;
    // Do not include empty blocks in the cost calculation.  This happen due to
    // loop canonicalization and will be removed.
    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
      continue;
    
    // Count basic blocks.
    ++Cost;
  }

  return Cost;
}

/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
/// invariant in the loop, or has an invariant piece, return the invariant.
/// Otherwise, return null.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
  // Constants should be folded, not unswitched on!
  if (isa<Constant>(Cond)) return false;
  
  // TODO: Handle: br (VARIANT|INVARIANT).
  // TODO: Hoist simple expressions out of loops.
  if (L->isLoopInvariant(Cond)) return Cond;
  
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    if (BO->getOpcode() == Instruction::And ||
        BO->getOpcode() == Instruction::Or) {
      // If either the left or right side is invariant, we can unswitch on this,
      // which will cause the branch to go away in one loop and the condition to
      // simplify in the other one.
      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
        return LHS;
      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
        return RHS;
    }
  
  return 0;
}

bool LoopUnswitch::visitLoop(Loop *L) {
  bool Changed = false;

  // Recurse through all subloops before we process this loop.  Copy the loop
  // list so that the child can update the loop tree if it needs to delete the
  // loop.
  std::vector<Loop*> SubLoops(L->begin(), L->end());
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
    Changed |= visitLoop(SubLoops[i]);

  // Loop over all of the basic blocks in the loop.  If we find an interior
  // block that is branching on a loop-invariant condition, we can unswitch this
  // loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I) {
    TerminatorInst *TI = (*I)->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      // If this isn't branching on an invariant condition, we can't unswitch
      // it.
      if (BI->isConditional()) {
        // See if this, or some part of it, is loop invariant.  If so, we can
        // unswitch on it if we desire.
        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
          ++NumBranches;
      }      
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
      if (LoopCond && SI->getNumCases() > 1) {
        // Find a value to unswitch on:
        // FIXME: this should chose the most expensive case!
        Constant *UnswitchVal = SI->getCaseValue(1);
        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
          ++NumSwitches;
      }
    }
    
    // Scan the instructions to check for unswitchable values.
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 
         BBI != E; ++BBI)
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
          ++NumSelects;
  return Changed;
}

/// UnswitchIfProfitable - We have found that we can unswitch L when
/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
  // Check to see if it would be profitable to unswitch this loop.
  if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
    // FIXME: this should estimate growth by the amount of code shared by the
    // resultant unswitched loops.
    //
    DEBUG(std::cerr << "NOT unswitching loop %"
                    << L->getHeader()->getName() << ", cost too high: "
                    << L->getBlocks().size() << "\n");
    return false;
  }
  // If this loop has live-out values, we can't unswitch it. We need something
  // like loop-closed SSA form in order to know how to insert PHI nodes for
  // these values.
  if (LoopValuesUsedOutsideLoop(L)) {
    DEBUG(std::cerr << "NOT unswitching loop %" << L->getHeader()->getName()
                    << ", a loop value is used outside loop!\n");
    return false;
  }
  //std::cerr << "BEFORE:\n"; LI->dump();
  Loop *NewLoop1 = 0, *NewLoop2 = 0;
  // If this is a trivial condition to unswitch (which results in no code
  // duplication), do it now.
  Constant *CondVal;
  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)){
    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
    NewLoop1 = L;
  } else {
    VersionLoop(LoopCond, Val, L, NewLoop1, NewLoop2);
  
  //std::cerr << "AFTER:\n"; LI->dump();
  
  // Try to unswitch each of our new loops now!
  if (NewLoop1) visitLoop(NewLoop1);
  if (NewLoop2) visitLoop(NewLoop2);
  return true;
BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
  TerminatorInst *LatchTerm = BB->getTerminator();
  unsigned SuccNum = 0;
  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
    assert(i != e && "Didn't find edge?");
    if (LatchTerm->getSuccessor(i) == Succ) {
      SuccNum = i;
      break;
    }
  }
  
  // If this is a critical edge, let SplitCriticalEdge do it.
  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
    return LatchTerm->getSuccessor(SuccNum);

  // If the edge isn't critical, then BB has a single successor or Succ has a
  // single pred.  Split the block.
  BasicBlock *BlockToSplit;
  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    // If the successor only has a single pred, split the top of the successor
    // block.
    assert(SP == BB && "CFG broken");
    BlockToSplit = Succ;
    SplitPoint = Succ->begin();
  } else {
    // Otherwise, if BB has a single successor, split it at the bottom of the
    // block.
    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
           "Should have a single succ!"); 
    BlockToSplit = BB;

  BasicBlock *New =
    BlockToSplit->splitBasicBlock(SplitPoint, 
                                  BlockToSplit->getName()+".tail");
  // New now lives in whichever loop that BB used to.
  if (Loop *L = LI->getLoopFor(BlockToSplit))
// RemapInstruction - Convert the instruction operands from referencing the
// current values into those specified by ValueMap.
//
static inline void RemapInstruction(Instruction *I,
                                    std::map<const Value *, Value*> &ValueMap) {
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
    Value *Op = I->getOperand(op);
    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
    if (It != ValueMap.end()) Op = It->second;
    I->setOperand(op, Op);
  }
}

/// CloneLoop - Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
                       LoopInfo *LI) {
  Loop *New = new Loop();

  if (PL)
    PL->addChildLoop(New);
  else
    LI->addTopLevelLoop(New);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    CloneLoop(*I, New, VM, LI);
/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
/// code immediately before InsertPt.
static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                           BasicBlock *TrueDest,
                                           BasicBlock *FalseDest,
                                           Instruction *InsertPt) {
  // Insert a conditional branch on LIC to the two preheaders.  The original
  // code is the true version and the new code is the false version.
  Value *BranchVal = LIC;
  if (!isa<ConstantBool>(Val)) {
    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
  } else if (Val != ConstantBool::True) {
    // We want to enter the new loop when the condition is true.
    std::swap(TrueDest, FalseDest);
  }

  // Insert the new branch.
  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
}


/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
/// condition in it (a cond branch from its header block to its latch block,
/// where the path through the loop that doesn't execute its body has no 
/// side-effects), unswitch it.  This doesn't involve any code duplication, just
/// moving the conditional branch outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 
  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
        << L->getHeader()->getName() << " [" << L->getBlocks().size()
        << " blocks] in Function " << L->getHeader()->getParent()->getName()
        << " on cond:" << *Cond << "\n");
  
  // First step, split the preheader, so that we know that there is a safe place
  // to insert the conditional branch.  We will change 'OrigPH' to have a
  // conditional branch on Cond.
  BasicBlock *OrigPH = L->getLoopPreheader();
  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we should
  // short-circuit to.
  // Split this edge now, so that the loop maintains its exit block.
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
  BasicBlock *NewExit = SplitEdge(L->getLoopLatch(), ExitBlock);
  assert(NewExit != ExitBlock && "Edge not split!");
    
  // Okay, now we have a position to branch from and a position to branch to, 
  // insert the new conditional branch.
  EmitPreheaderBranchOnCondition(Cond, Val, NewPH, NewExit, 
                                 OrigPH->getTerminator());
  OrigPH->getTerminator()->eraseFromParent();

  // Now that we know that the loop is never entered when this condition is a
  // particular value, rewrite the loop with this info.  We know that this will
  // at least eliminate the old branch.
  RewriteLoopBodyWithConditionConstant(L, Cond, Val, true);
/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
/// equal Val.  Split it into loop versions and test the condition outside of
/// either loop.  Return the loops created as Out1/Out2.
void LoopUnswitch::VersionLoop(Value *LIC, Constant *Val, Loop *L,
                               Loop *&Out1, Loop *&Out2) {
  Function *F = L->getHeader()->getParent();
  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
                  << " blocks] in Function " << F->getName()
                  << " when '" << *Val << "' == " << *LIC << "\n");
  // LoopBlocks contains all of the basic blocks of the loop, including the
  // preheader of the loop, the body of the loop, and the exit blocks of the 
  // loop, in that order.
  std::vector<BasicBlock*> LoopBlocks;

  // First step, split the preheader and exit blocks, and add these blocks to
  // the LoopBlocks list.
  BasicBlock *OrigPreheader = L->getLoopPreheader();
  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));

  // We want the loop to come after the preheader, but before the exit blocks.
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());

  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  std::sort(ExitBlocks.begin(), ExitBlocks.end());
  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
                   ExitBlocks.end());
  // Split all of the edges from inside the loop to their exit blocks.  This
  // unswitching trivial: no phi nodes to update.
  unsigned NumBlocks = L->getBlocks().size();
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBlock = ExitBlocks[i];
    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));

    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
      assert(L->contains(Preds[j]) &&
             "All preds of loop exit blocks must be the same loop!");
      SplitEdge(Preds[j], ExitBlock);
    }
  
  // The exit blocks may have been changed due to edge splitting, recompute.
  ExitBlocks.clear();
  L->getExitBlocks(ExitBlocks);
  std::sort(ExitBlocks.begin(), ExitBlocks.end());
  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
                   ExitBlocks.end());
  
  // Add exit blocks to the loop blocks.
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());

  // Next step, clone all of the basic blocks that make up the loop (including
  // the loop preheader and exit blocks), keeping track of the mapping between
  // the instructions and blocks.
  std::vector<BasicBlock*> NewBlocks;
  NewBlocks.reserve(LoopBlocks.size());
  std::map<const Value*, Value*> ValueMap;
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
    NewBlocks.push_back(New);
    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
  }

  // Splice the newly inserted blocks into the function right before the
  // original preheader.
  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
                                NewBlocks[0], F->end());

  // Now we create the new Loop object for the versioned loop.
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
  Loop *ParentLoop = L->getParentLoop();
  if (ParentLoop) {
    // Make sure to add the cloned preheader and exit blocks to the parent loop
    // as well.
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
  }
  
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
    if (ParentLoop)
      ParentLoop->addBasicBlockToLoop(cast<BasicBlock>(NewExit), *LI);
    
    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
    
    // If the successor of the exit block had PHI nodes, add an entry for
    // NewExit.
    PHINode *PN;
    for (BasicBlock::iterator I = ExitSucc->begin();
         (PN = dyn_cast<PHINode>(I)); ++I) {
      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
      if (It != ValueMap.end()) V = It->second;
      PN->addIncoming(V, NewExit);
    }
  }

  // Rewrite the code to refer to itself.
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
           E = NewBlocks[i]->end(); I != E; ++I)
      RemapInstruction(I, ValueMap);
  // Rewrite the original preheader to select between versions of the loop.
  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
         "Preheader splitting did not work correctly!");

  // Emit the new branch that selects between the two versions of this loop.
  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
  OldBR->eraseFromParent();

  // Now we rewrite the original code to know that the condition is true and the
  // new code to know that the condition is false.
  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
// the value specified by Val in the specified loop, or we know it does NOT have
// that value.  Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
  // FIXME: Support correlated properties, like:
  //  for (...)
  //    if (li1 < li2)
  //      ...
  //    if (li1 > li2)
  //      ...

  // NotVal - If Val is a bool, this contains its inverse.
  Constant *NotVal = 0;
  if (ConstantBool *CB = dyn_cast<ConstantBool>(Val))
    NotVal = ConstantBool::get(!CB->getValue());
  
  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
  // selects, switches.
  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
  
  // Haha, this loop could be unswitched.  Get it? The unswitch pass could
  // unswitch itself. Amazing.
  for (unsigned i = 0, e = Users.size(); i != e; ++i)
    if (Instruction *U = cast<Instruction>(Users[i]))
        if (IsEqual) {
          U->replaceUsesOfWith(LIC, Val);
        } else if (NotVal) {
          U->replaceUsesOfWith(LIC, NotVal);
        } else {
          // If we know that LIC is not Val, use this info to simplify code.
          if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
              if (SI->getCaseValue(i) == Val) {
                // Found a dead case value.  Don't remove PHI nodes in the 
                // successor if they become single-entry, those PHI nodes may
                // be in the Users list.
                SI->getSuccessor(i)->removePredecessor(SI->getParent(), true);
                SI->removeCase(i);
                break;
              }
            }
          }

          // TODO: We could simplify stuff like X == C.
        }