Newer
Older
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetInfo.h"
Chris Lattner
committed
#include "llvm/ADT/SmallVector.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
Chris Lattner
committed
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
// Destroy the object, but don't call delete. These are malloc'd.
FT->~FunctionTypeProto();
free(FT);
} else {
delete Types.back();
}
Types.pop_back();
}
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
unsigned NumObjCQualifiedIds = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
++NumTagged;
switch (TT->getDecl()->getKind()) {
default: assert(0 && "Unknown tagged type!");
case Decl::Struct: ++NumTagStruct; break;
case Decl::Union: ++NumTagUnion; break;
case Decl::Class: ++NumTagClass; break;
case Decl::Enum: ++NumTagEnum; break;
}
} else if (isa<ObjCInterfaceType>(T))
++NumObjCInterfaces;
else if (isa<ObjCQualifiedInterfaceType>(T))
++NumObjCQualifiedInterfaces;
else if (isa<ObjCQualifiedIdType>(T))
++NumObjCQualifiedIds;
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
fprintf(stderr, " %d protocol qualified interface types\n",
NumObjCQualifiedInterfaces);
Fariborz Jahanian
committed
fprintf(stderr, " %d protocol qualified id types\n",
NumObjCQualifiedIds);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
Chris Lattner
committed
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
Chris Lattner
committed
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned(FullSourceLoc()))
Chris Lattner
committed
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
Chris Lattner
committed
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
Chris Lattner
committed
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
Chris Lattner
committed
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C99 6.2.5p11.
Chris Lattner
committed
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
ObjCIdType = QualType();
ObjCClassType = QualType();
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T, SourceLocation L) {
T = T.getCanonicalType();
uint64_t Size;
unsigned Align;
switch (T->getTypeClass()) {
Chris Lattner
committed
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
Chris Lattner
committed
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(CAT->getElementType(), L);
Size = EltInfo.first*CAT->getSize().getZExtValue();
Chris Lattner
committed
Align = EltInfo.second;
break;
}
case Type::OCUVector:
Chris Lattner
committed
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType(), L);
Size = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: Vector alignment is not the alignment of its elements.
Align = EltInfo.second;
break;
}
case Type::Builtin: {
// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
const llvm::fltSemantics *F;
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool:
Target.getBoolInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
Target.getCharInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Target.getShortInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Target.getIntInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Target.getLongInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Target.getLongLongInfo(Size, Align, getFullLoc(L));
break;
case BuiltinType::Float:
Target.getFloatInfo(Size, Align, F, getFullLoc(L));
break;
case BuiltinType::Double:
Target.getDoubleInfo(Size, Align, F, getFullLoc(L));
break;
case BuiltinType::LongDouble:
Target.getLongDoubleInfo(Size, Align, F, getFullLoc(L));
break;
}
break;
}
Christopher Lamb
committed
case Type::ASQual:
return getTypeInfo(cast<ASQualType>(T)->getBaseType(), L);
case Type::ObjCQualifiedId:
Target.getPointerInfo(Size, Align, getFullLoc(L));
break;
case Type::Pointer:
Target.getPointerInfo(Size, Align, getFullLoc(L));
break;
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout: a reference in a struct has
// pointer size.
return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L);
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType(), L);
Size = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::Tagged:
TagType *TT = cast<TagType>(T);
if (RecordType *RT = dyn_cast<RecordType>(TT)) {
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl(), L);
Size = Layout.getSize();
Align = Layout.getAlignment();
} else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
return getTypeInfo(ED->getIntegerType(), L);
assert(0 && "Unimplemented type sizes!");
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Size, Align);
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D,
SourceLocation L) {
assert(D->isDefinition() && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
uint64_t RecordSize = 0;
unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits.
if (D->getKind() != Decl::Union) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
uint64_t FieldSize;
unsigned FieldAlign;
if (FD->getType()->isIncompleteType()) {
// This must be a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
const ArrayType* ATy = FD->getType()->getAsArrayType();
FieldAlign = getTypeAlign(ATy->getElementType(), L);
FieldSize = 0;
} else {
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Round up the current record size to the field's alignment boundary.
RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
// Place this field at the current location.
FieldOffsets[i] = RecordSize;
// Reserve space for this field.
RecordSize += FieldSize;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
} else {
// Union layout just puts each member at the start of the record.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// Round up the current record size to the field's alignment boundary.
RecordSize = std::max(RecordSize, FieldSize);
// Place this field at the start of the record.
FieldOffsets[i] = 0;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
}
NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
Christopher Lamb
committed
QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
// Check if we've already instantiated an address space qual'd type of this type.
llvm::FoldingSetNodeID ID;
ASQualType::Profile(ID, T, AddressSpace);
void *InsertPos = 0;
if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ASQy, 0);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getASQualType(T.getCanonicalType(), AddressSpace);
// Get the new insert position for the node we care about.
ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ASQualType *New = new ASQualType(T, Canonical, AddressSpace);
ASQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
Chris Lattner
committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
if (!T->isCanonical()) {
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
Steve Naroff
committed
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
if (!EltTy->isCanonical()) {
Steve Naroff
committed
Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
Chris Lattner
committed
Steve Naroff
committed
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
Chris Lattner
committed
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
Steve Naroff
committed
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
if (NumElts) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
CompleteVariableArrayTypes.push_back(New);
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
Types.push_back(New);
return QualType(New, 0);
}
else {
// No size is provided for the VLA. These we can unique.
llvm::FoldingSetNodeID ID;
VariableArrayType::Profile(ID, EltTy);
void *InsertPos = 0;
if (VariableArrayType *ATP =
IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getVariableArrayType(EltTy.getCanonicalType(), NumElts,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
VariableArrayType *NewIP =
IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
IncompleteVariableArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/// getOCUVectorType - Return the unique reference to an OCU vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
Chris Lattner
committed
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
Chris Lattner
committed
// Unique functions, to guarantee there is only one function of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
Chris Lattner
committed
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
Chris Lattner
committed
if (!ResultTy->isCanonical()) {
Chris Lattner
committed
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
Chris Lattner
committed
Chris Lattner
committed
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeProtos.InsertNode(New, InsertPos);
Chris Lattner
committed
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
Chris Lattner
committed
// Unique functions, to guarantee there is only one function of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
Chris Lattner
committed
if (!isCanonical) {
Chris Lattner
committed
llvm::SmallVector<QualType, 16> CanonicalArgs;
Chris Lattner
committed
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
Canonical = getFunctionType(ResultTy.getCanonicalType(),
&CanonicalArgs[0], NumArgs,
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
Chris Lattner
committed
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
Chris Lattner
committed
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
Chris Lattner
committed
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
Fariborz Jahanian
committed
Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjCQualifiedInterfaceType - Return a
/// ObjCQualifiedInterfaceType type for the given interface decl and
/// the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
llvm::FoldingSetNodeID ID;
ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjCQualifiedInterfaceType *QT =
ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjCQualifiedInterfaceType *QType =
new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
Types.push_back(QType);
ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCQualifiedIdType - Return a
/// getObjCQualifiedIdType type for the 'id' decl and
Fariborz Jahanian
committed
/// the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(QualType idType,
ObjCProtocolDecl **Protocols,
Fariborz Jahanian
committed
unsigned NumProtocols) {
llvm::FoldingSetNodeID ID;
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
Fariborz Jahanian
committed
void *InsertPos = 0;
if (ObjCQualifiedIdType *QT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
Fariborz Jahanian
committed
return QualType(QT, 0);
// No Match;
QualType Canonical;
if (!idType->isCanonical()) {
Canonical = getObjCQualifiedIdType(idType.getCanonicalType(),
Protocols, NumProtocols);
ObjCQualifiedIdType *NewQT =
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewQT == 0 && "Shouldn't be in the map!");
}
ObjCQualifiedIdType *QType =
new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
Fariborz Jahanian
committed
Types.push_back(QType);
ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
Fariborz Jahanian
committed
return QualType(QType, 0);
}
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = tofType.getCanonicalType();
TypeOfType *tot = new TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
assert (Decl);
// The decl stores the type cache.
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Ted Kremenek
committed
TagType* T = new TagType(Decl, QualType());
Types.push_back(T);
Decl->TypeForDecl = T;
Ted Kremenek
committed
return QualType(T, 0);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
/// width of characters in wide strings, The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getWcharType() const {
// On Darwin, wchar_t is defined as a "int".
// FIXME: should derive from "Target".
return IntTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum.
static int getIntegerRank(QualType t) {
if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
return 4;
}
Christopher Lamb
committed
const BuiltinType *BT = t.getCanonicalType()->getAsBuiltinType();
switch (BT->getKind()) {
default:
assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
Chris Lattner
committed
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
Chris Lattner
committed
static int getFloatingRank(QualType T) {
T = T.getCanonicalType();
Christopher Lamb
committed
if (const ComplexType *CT = T->getAsComplexType())
Chris Lattner
committed
return getFloatingRank(CT->getElementType());
Christopher Lamb
committed
switch (T->getAsBuiltinType()->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
Chris Lattner
committed
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
QualType typeSize, QualType typeDomain) const {
if (typeDomain->isComplexType()) {
switch (getFloatingRank(typeSize)) {
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
if (typeDomain->isRealFloatingType()) {
switch (getFloatingRank(typeSize)) {
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
//an invalid return value, but the assert
//will ensure that this code is never reached.
return VoidTy;
Steve Naroff
committed
/// compareFloatingType - Handles 3 different combos:
/// float/float, float/complex, complex/complex.
/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1.
int ASTContext::compareFloatingType(QualType lt, QualType rt) {
if (getFloatingRank(lt) == getFloatingRank(rt))
return 0;
if (getFloatingRank(lt) > getFloatingRank(rt))
return 1;
return -1;
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
Chris Lattner
committed
if (lhs == rhs) return lhs;
bool t1Unsigned = lhs->isUnsignedIntegerType();
bool t2Unsigned = rhs->isUnsignedIntegerType();
if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
// We have two integer types with differing signs
QualType unsignedType = t1Unsigned ? lhs : rhs;
QualType signedType = t1Unsigned ? rhs : lhs;
if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
return unsignedType;
else {
// FIXME: Need to check if the signed type can represent all values of the
// unsigned type. If it can, then the result is the signed type.
// If it can't, then the result is the unsigned version of the signed type.
// Should probably add a helper that returns a signed integer type from
// an unsigned (and vice versa). C99 6.3.1.8.
return signedType;
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(),
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
FieldTypes[3] = LongTy;
FieldDecl *FieldDecls[4];
for (unsigned i = 0; i < 4; ++i)
CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
}
return getTagDeclType(CFConstantStringTypeDecl);