Newer
Older
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. The canonical induction variable is guaranteed to be in a wide enough
// type so that IV expressions need not be (directly) zero-extended or
// sign-extended.
// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.
//
//===----------------------------------------------------------------------===//
Chris Lattner
committed
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
Chris Lattner
committed
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumWidened , "Number of indvars widened");
STATISTIC(NumInserted , "Number of canonical indvars added");
STATISTIC(NumReplaced , "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
static cl::opt<bool> DisableIVRewrite(
"disable-iv-rewrite", cl::Hidden,
cl::desc("Disable canonical induction variable rewriting"));
Chris Lattner
committed
namespace {
class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner
committed
bool Changed;
static char ID; // Pass identification, replacement for typeid
IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Changed(false) {
Owen Anderson
committed
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
if (!DisableIVRewrite)
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
if (!DisableIVRewrite)
AU.addPreserved<IVUsers>();
virtual void releaseMemory() {
DeadInsts.clear();
}
bool isValidRewrite(Value *FromVal, Value *ToVal);
void HandleFloatingPointIV(Loop *L, PHINode *PH);
void RewriteNonIntegerIVs(Loop *L);
void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
void SimplifyIVUsers(SCEVExpander &Rewriter);
void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
void EliminateIVRemainder(BinaryOperator *Rem,
Value *IVOperand,
void SimplifyCongruentIVs(Loop *L);
void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
PHINode *IndVar,
SCEVExpander &Rewriter);
void SinkUnusedInvariants(Loop *L);
char IndVarSimplify::ID = 0;
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false)
Owen Anderson
committed
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
INITIALIZE_PASS_END(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false)
Pass *llvm::createIndVarSimplifyPass() {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/// isValidRewrite - Return true if the SCEV expansion generated by the
/// rewriter can replace the original value. SCEV guarantees that it
/// produces the same value, but the way it is produced may be illegal IR.
/// Ideally, this function will only be called for verification.
bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
// If an SCEV expression subsumed multiple pointers, its expansion could
// reassociate the GEP changing the base pointer. This is illegal because the
// final address produced by a GEP chain must be inbounds relative to its
// underlying object. Otherwise basic alias analysis, among other things,
// could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
// producing an expression involving multiple pointers. Until then, we must
// bail out here.
//
// Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
// because it understands lcssa phis while SCEV does not.
Value *FromPtr = FromVal;
Value *ToPtr = ToVal;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
FromPtr = GEP->getPointerOperand();
}
if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
ToPtr = GEP->getPointerOperand();
}
if (FromPtr != FromVal || ToPtr != ToVal) {
// Quickly check the common case
if (FromPtr == ToPtr)
return true;
// SCEV may have rewritten an expression that produces the GEP's pointer
// operand. That's ok as long as the pointer operand has the same base
// pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
// base of a recurrence. This handles the case in which SCEV expansion
// converts a pointer type recurrence into a nonrecurrent pointer base
// indexed by an integer recurrence.
const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
if (FromBase == ToBase)
return true;
DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
<< *FromBase << " != " << *ToBase << "\n");
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
//===----------------------------------------------------------------------===//
/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
bool isExact = false;
if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
// See if we can convert this to an int64_t
uint64_t UIntVal;
if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
&isExact) != APFloat::opOK || !isExact)
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
/// bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
/// bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
ConstantFP *InitValueVal =
dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
int64_t InitValue;
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
return;
// Check IV increment. Reject this PN if increment operation is not
// an add or increment value can not be represented by an integer.
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
// If this is not an add of the PHI with a constantfp, or if the constant fp
// is not an integer, bail out.
ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
int64_t IncValue;
if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
!ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
return;
// Check Incr uses. One user is PN and the other user is an exit condition
// used by the conditional terminator.
Value::use_iterator IncrUse = Incr->use_begin();
Instruction *U1 = cast<Instruction>(*IncrUse++);
if (IncrUse == Incr->use_end()) return;
Instruction *U2 = cast<Instruction>(*IncrUse++);
if (IncrUse != Incr->use_end()) return;
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
// only used by a branch, we can't transform it.
FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
if (!Compare)
Compare = dyn_cast<FCmpInst>(U2);
if (Compare == 0 || !Compare->hasOneUse() ||
!isa<BranchInst>(Compare->use_back()))
return;
BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
// We need to verify that the branch actually controls the iteration count
// of the loop. If not, the new IV can overflow and no one will notice.
// The branch block must be in the loop and one of the successors must be out
// of the loop.
assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
if (!L->contains(TheBr->getParent()) ||
(L->contains(TheBr->getSuccessor(0)) &&
L->contains(TheBr->getSuccessor(1))))
return;
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
// transform it.
ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
int64_t ExitValue;
if (ExitValueVal == 0 ||
!ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
return;
// Find new predicate for integer comparison.
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
switch (Compare->getPredicate()) {
default: return; // Unknown comparison.
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
}
// We convert the floating point induction variable to a signed i32 value if
// we can. This is only safe if the comparison will not overflow in a way
// that won't be trapped by the integer equivalent operations. Check for this
// now.
// TODO: We could use i64 if it is native and the range requires it.
// The start/stride/exit values must all fit in signed i32.
if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
return;
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// If not actually striding (add x, 0.0), avoid touching the code.
if (IncValue == 0)
return;
// Positive and negative strides have different safety conditions.
if (IncValue > 0) {
// If we have a positive stride, we require the init to be less than the
// exit value and an equality or less than comparison.
if (InitValue >= ExitValue ||
NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
return;
uint32_t Range = uint32_t(ExitValue-InitValue);
if (NewPred == CmpInst::ICMP_SLE) {
// Normalize SLE -> SLT, check for infinite loop.
if (++Range == 0) return; // Range overflows.
}
unsigned Leftover = Range % uint32_t(IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
return;
} else {
// If we have a negative stride, we require the init to be greater than the
// exit value and an equality or greater than comparison.
if (InitValue >= ExitValue ||
NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
return;
uint32_t Range = uint32_t(InitValue-ExitValue);
if (NewPred == CmpInst::ICMP_SGE) {
// Normalize SGE -> SGT, check for infinite loop.
if (++Range == 0) return; // Range overflows.
}
unsigned Leftover = Range % uint32_t(-IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
return;
}
const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
PN->getIncomingBlock(IncomingEdge));
Value *NewAdd =
BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
ConstantInt::get(Int32Ty, ExitValue),
Compare->getName());
// In the following deletions, PN may become dead and may be deleted.
// Use a WeakVH to observe whether this happens.
WeakVH WeakPH = PN;
// Delete the old floating point exit comparison. The branch starts using the
// new comparison.
NewCompare->takeName(Compare);
Compare->replaceAllUsesWith(NewCompare);
RecursivelyDeleteTriviallyDeadInstructions(Compare);
// Delete the old floating point increment.
Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr);
// If the FP induction variable still has uses, this is because something else
// in the loop uses its value. In order to canonicalize the induction
// variable, we chose to eliminate the IV and rewrite it in terms of an
// int->fp cast.
//
// We give preference to sitofp over uitofp because it is faster on most
// platforms.
if (WeakPH) {
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
PN->getParent()->getFirstNonPHI());
PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
// Add a new IVUsers entry for the newly-created integer PHI.
if (IU)
IU->AddUsersIfInteresting(NewPHI);
}
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
//
BasicBlock *Header = L->getHeader();
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
HandleFloatingPointIV(L, PN);
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
// re-writing, the trip count may be computable.
if (Changed)
SE->forgetLoop(L);
}
//===----------------------------------------------------------------------===//
// RewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
// Verify the input to the pass in already in LCSSA form.
assert(L->isLCSSAForm(*DT));
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitBlocks[i];
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
// SCEV only supports integer expressions for now.
if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
continue;
// It's necessary to tell ScalarEvolution about this explicitly so that
// it can walk the def-use list and forget all SCEVs, as it may not be
// watching the PHI itself. Once the new exit value is in place, there
// may not be a def-use connection between the loop and every instruction
// which got a SCEVAddRecExpr for that loop.
SE->forgetValue(PN);
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst))
continue;
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (!SE->isLoopInvariant(ExitValue, L))
continue;
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
Chris Lattner
committed
if (!isValidRewrite(Inst, ExitVal)) {
DeadInsts.push_back(ExitVal);
continue;
}
Changed = true;
++NumReplaced;
PN->setIncomingValue(i, ExitVal);
// If this instruction is dead now, delete it.
RecursivelyDeleteTriviallyDeadInstructions(Inst);
if (NumPreds == 1) {
// Completely replace a single-pred PHI. This is safe, because the
// NewVal won't be variant in the loop, so we don't need an LCSSA phi
// node anymore.
PN->replaceAllUsesWith(ExitVal);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = cast<PHINode>(PN->clone());
NewPN->takeName(PN);
NewPN->insertBefore(PN);
PN->replaceAllUsesWith(NewPN);
PN->eraseFromParent();
}
}
}
// The insertion point instruction may have been deleted; clear it out
// so that the rewriter doesn't trip over it later.
Rewriter.clearInsertPoint();
Chris Lattner
committed
//===----------------------------------------------------------------------===//
// Rewrite IV users based on a canonical IV.
// To be replaced by -disable-iv-rewrite.
//===----------------------------------------------------------------------===//
/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
/// loop. IVUsers is treated as a worklist. Each successive simplification may
/// push more users which may themselves be candidates for simplification.
///
/// This is the old approach to IV simplification to be replaced by
/// SimplifyIVUsersNoRewrite.
///
void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
// Each round of simplification involves a round of eliminating operations
// followed by a round of widening IVs. A single IVUsers worklist is used
// across all rounds. The inner loop advances the user. If widening exposes
// more uses, then another pass through the outer loop is triggered.
for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
Instruction *UseInst = I->getUser();
Value *IVOperand = I->getOperandValToReplace();
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
EliminateIVComparison(ICmp, IVOperand);
continue;
}
if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
bool IsSigned = Rem->getOpcode() == Instruction::SRem;
if (IsSigned || Rem->getOpcode() == Instruction::URem) {
EliminateIVRemainder(Rem, IVOperand, IsSigned);
continue;
}
}
}
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
// Loop-invariant values are safe.
if (SE->isLoopInvariant(S, L)) return true;
// Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
// to transform them into efficient code.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
return AR->isAffine();
// An add is safe it all its operands are safe.
if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
E = Commutative->op_end(); I != E; ++I)
if (!isSafe(*I, L, SE)) return false;
return true;
}
// A cast is safe if its operand is.
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
return isSafe(C->getOperand(), L, SE);
// A udiv is safe if its operands are.
if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
return isSafe(UD->getLHS(), L, SE) &&
isSafe(UD->getRHS(), L, SE);
// SCEVUnknown is always safe.
if (isa<SCEVUnknown>(S))
return true;
// Nothing else is safe.
return false;
}
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// Rewrite all induction variable expressions in terms of the canonical
// induction variable.
//
// If there were induction variables of other sizes or offsets, manually
// add the offsets to the primary induction variable and cast, avoiding
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
const Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(UI->getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
if (SE->isLoopInvariant(ExitVal, L))
AR = ExitVal;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
if (!isSafe(AR, L, SE))
continue;
// Determine the insertion point for this user. By default, insert
// immediately before the user. The SCEVExpander class will automatically
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
Instruction *InsertPt = User;
if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
if (PHI->getIncomingValue(i) == Op) {
if (InsertPt == User)
InsertPt = PHI->getIncomingBlock(i)->getTerminator();
else
InsertPt =
DT->findNearestCommonDominator(InsertPt->getParent(),
PHI->getIncomingBlock(i))
->getTerminator();
}
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
if (!isValidRewrite(Op, NewVal)) {
DeadInsts.push_back(NewVal);
continue;
}
// Inform ScalarEvolution that this value is changing. The change doesn't
// affect its value, but it does potentially affect which use lists the
// value will be on after the replacement, which affects ScalarEvolution's
// ability to walk use lists and drop dangling pointers when a value is
// deleted.
SE->forgetValue(User);
// Patch the new value into place.
if (Op->hasName())
NewVal->takeName(Op);
if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
NewValI->setDebugLoc(User->getDebugLoc());
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
++NumRemoved;
Changed = true;
// The old value may be dead now.
DeadInsts.push_back(Op);
}
}
//===----------------------------------------------------------------------===//
// IV Widening - Extend the width of an IV to cover its widest uses.
//===----------------------------------------------------------------------===//
namespace {
// Collect information about induction variables that are used by sign/zero
// extend operations. This information is recorded by CollectExtend and
// provides the input to WidenIV.
struct WideIVInfo {
const Type *WidestNativeType; // Widest integer type created [sz]ext
bool IsSigned; // Was an sext user seen before a zext?
WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
};
}
/// CollectExtend - Update information about the induction variable that is
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
ScalarEvolution *SE, const TargetData *TD) {
const Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
if (TD && !TD->isLegalInteger(Width))
return;
if (!WI.WidestNativeType) {
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
WI.IsSigned = IsSigned;
return;
}
// We extend the IV to satisfy the sign of its first user, arbitrarily.
if (WI.IsSigned != IsSigned)
return;
if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
}
namespace {
/// WidenIV - The goal of this transform is to remove sign and zero extends
/// without creating any new induction variables. To do this, it creates a new
/// phi of the wider type and redirects all users, either removing extends or
/// inserting truncs whenever we stop propagating the type.
///
class WidenIV {
// Parameters
PHINode *OrigPhi;
const Type *WideType;
bool IsSigned;
// Context
LoopInfo *LI;
Loop *L;
ScalarEvolution *SE;
DominatorTree *DT;
// Result
PHINode *WidePhi;
Instruction *WideInc;
const SCEV *WideIncExpr;
SmallVectorImpl<WeakVH> &DeadInsts;
SmallPtrSet<Instruction*,16> Widened;
Andrew Trick
committed
SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
public:
WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
ScalarEvolution *SEv, DominatorTree *DTree,
SmallVectorImpl<WeakVH> &DI) :
OrigPhi(PN),
WideType(WI.WidestNativeType),
IsSigned(WI.IsSigned),
LI(LInfo),
L(LI->getLoopFor(OrigPhi->getParent())),
SE(SEv),
DT(DTree),
WidePhi(0),
WideInc(0),
WideIncExpr(0),
DeadInsts(DI) {
assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
}
PHINode *CreateWideIV(SCEVExpander &Rewriter);
protected:
Instruction *CloneIVUser(Instruction *NarrowUse,
Instruction *NarrowDef,
Instruction *WideDef);
const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
Instruction *WideDef);
Andrew Trick
committed
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
};
} // anonymous namespace
static Value *getExtend( Value *NarrowOper, const Type *WideType,
bool IsSigned, IRBuilder<> &Builder) {
return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
Builder.CreateZExt(NarrowOper, WideType);
}
/// CloneIVUser - Instantiate a wide operation to replace a narrow
/// operation. This only needs to handle operations that can evaluation to
/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
Instruction *NarrowDef,
Instruction *WideDef) {
unsigned Opcode = NarrowUse->getOpcode();
switch (Opcode) {
default:
return 0;
case Instruction::Add:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
IRBuilder<> Builder(NarrowUse);
// Replace NarrowDef operands with WideDef. Otherwise, we don't know
// anything about the narrow operand yet so must insert a [sz]ext. It is
// probably loop invariant and will be folded or hoisted. If it actually
// comes from a widened IV, it should be removed during a future call to
// WidenIVUse.
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
LHS, RHS,
NarrowBO->getName());
Builder.Insert(WideBO);
Andrew Trick
committed
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
}
return WideBO;
}
llvm_unreachable(0);
}
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/// HoistStep - Attempt to hoist an IV increment above a potential use.
///
/// To successfully hoist, two criteria must be met:
/// - IncV operands dominate InsertPos and
/// - InsertPos dominates IncV
///
/// Meeting the second condition means that we don't need to check all of IncV's
/// existing uses (it's moving up in the domtree).
///
/// This does not yet recursively hoist the operands, although that would
/// not be difficult.
static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
const DominatorTree *DT)
{
if (DT->dominates(IncV, InsertPos))
return true;
if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
return false;
if (IncV->mayHaveSideEffects())
return false;
// Attempt to hoist IncV
for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
OI != OE; ++OI) {
Instruction *OInst = dyn_cast<Instruction>(OI);
if (OInst && !DT->dominates(OInst, InsertPos))
return false;
}
IncV->moveBefore(InsertPos);
return true;
}
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
// perspective after widening it's type? In other words, can the extend be
// safely hoisted out of the loop with SCEV reducing the value to a recurrence
// on the same loop. If so, return the sign or zero extended
// recurrence. Otherwise return NULL.
const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
if (!SE->isSCEVable(NarrowUse->getType()))
return 0;
const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
if (SE->getTypeSizeInBits(NarrowExpr->getType())
>= SE->getTypeSizeInBits(WideType)) {
// NarrowUse implicitly widens its operand. e.g. a gep with a narrow
// index. So don't follow this use.
return 0;
}
const SCEV *WideExpr = IsSigned ?
SE->getSignExtendExpr(NarrowExpr, WideType) :
SE->getZeroExtendExpr(NarrowExpr, WideType);
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
if (!AddRec || AddRec->getLoop() != L)
return 0;
return AddRec;
}
/// WidenIVUse - Determine whether an individual user of the narrow IV can be
/// widened. If so, return the wide clone of the user.
Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
Instruction *WideDef) {
Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
Andrew Trick
committed
// Stop traversing the def-use chain at inner-loop phis or post-loop phis.
if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
return 0;
// Our raison d'etre! Eliminate sign and zero extension.
if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
Value *NewDef = WideDef;
if (NarrowUse->getType() != WideType) {
unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
if (CastWidth < IVWidth) {
// The cast isn't as wide as the IV, so insert a Trunc.
IRBuilder<> Builder(NarrowDefUse);
NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
}
else {
// A wider extend was hidden behind a narrower one. This may induce
// another round of IV widening in which the intermediate IV becomes
// dead. It should be very rare.
DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
<< " not wide enough to subsume " << *NarrowUse << "\n");
NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
NewDef = NarrowUse;
}
}
if (NewDef != NarrowUse) {
DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
<< " replaced by " << *WideDef << "\n");
++NumElimExt;
NarrowUse->replaceAllUsesWith(NewDef);
DeadInsts.push_back(NarrowUse);
}
// Now that the extend is gone, we want to expose it's uses for potential
// further simplification. We don't need to directly inform SimplifyIVUsers
// of the new users, because their parent IV will be processed later as a
// new loop phi. If we preserved IVUsers analysis, we would also want to
// push the uses of WideDef here.