Newer
Older
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. The canonical induction variable is guaranteed to be in a wide enough
// type so that IV expressions need not be (directly) zero-extended or
// sign-extended.
// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.
//
//===----------------------------------------------------------------------===//
Chris Lattner
committed
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
Chris Lattner
committed
#include "llvm/Support/CFG.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
Chris Lattner
committed
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumWidened , "Number of indvars widened");
Chris Lattner
committed
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
// DisableIVRewrite mode currently affects IVUsers, so is defined in libAnalysis
// and referenced here.
namespace llvm {
extern bool DisableIVRewrite;
}
Chris Lattner
committed
namespace {
class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner
committed
bool Changed;
static char ID; // Pass identification, replacement for typeid
IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0) {
Owen Anderson
committed
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<IVUsers>();
AU.setPreservesCFG();
}
bool isValidRewrite(Value *FromVal, Value *ToVal);
void SimplifyIVUsers();
void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
void EliminateIVRemainder(BinaryOperator *Rem,
Value *IVOperand,
bool IsSigned);
void RewriteNonIntegerIVs(Loop *L);
const Type *WidenIVs(Loop *L, SCEVExpander &Rewriter);
bool canExpandBackedgeTakenCount(Loop *L,
const SCEV *BackedgeTakenCount);
ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
PHINode *IndVar,
SCEVExpander &Rewriter);
void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
void SinkUnusedInvariants(Loop *L);
void HandleFloatingPointIV(Loop *L, PHINode *PH);
char IndVarSimplify::ID = 0;
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false)
Owen Anderson
committed
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
INITIALIZE_PASS_END(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false)
Pass *llvm::createIndVarSimplifyPass() {
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/// isValidRewrite - Return true if the SCEV expansion generated by the
/// rewriter can replace the original value. SCEV guarantees that it
/// produces the same value, but the way it is produced may be illegal IR.
/// Ideally, this function will only be called for verification.
bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
// If an SCEV expression subsumed multiple pointers, its expansion could
// reassociate the GEP changing the base pointer. This is illegal because the
// final address produced by a GEP chain must be inbounds relative to its
// underlying object. Otherwise basic alias analysis, among other things,
// could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
// producing an expression involving multiple pointers. Until then, we must
// bail out here.
//
// Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
// because it understands lcssa phis while SCEV does not.
Value *FromPtr = FromVal;
Value *ToPtr = ToVal;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
FromPtr = GEP->getPointerOperand();
}
if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
ToPtr = GEP->getPointerOperand();
}
if (FromPtr != FromVal || ToPtr != ToVal) {
// Quickly check the common case
if (FromPtr == ToPtr)
return true;
// SCEV may have rewritten an expression that produces the GEP's pointer
// operand. That's ok as long as the pointer operand has the same base
// pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
// base of a recurrence. This handles the case in which SCEV expansion
// converts a pointer type recurrence into a nonrecurrent pointer base
// indexed by an integer recurrence.
const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
if (FromBase == ToBase)
return true;
DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
<< *FromBase << " != " << *ToBase << "\n");
return false;
}
return true;
}
/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
/// count expression can be safely and cheaply expanded into an instruction
/// sequence that can be used by LinearFunctionTestReplace.
bool IndVarSimplify::
canExpandBackedgeTakenCount(Loop *L,
const SCEV *BackedgeTakenCount) {
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
BackedgeTakenCount->isZero())
return false;
if (!L->getExitingBlock())
return false;
// Can't rewrite non-branch yet.
BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
if (!BI)
return false;
// Special case: If the backedge-taken count is a UDiv, it's very likely a
// UDiv that ScalarEvolution produced in order to compute a precise
// expression, rather than a UDiv from the user's code. If we can't find a
// UDiv in the code with some simple searching, assume the former and forego
// rewriting the loop.
if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
if (!OrigCond) return false;
const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
if (R != BackedgeTakenCount) {
const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
if (L != BackedgeTakenCount)
}
}
return true;
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
ICmpInst *IndVarSimplify::
LinearFunctionTestReplace(Loop *L,
const SCEV *BackedgeTakenCount,
PHINode *IndVar,
SCEVExpander &Rewriter) {
assert(canExpandBackedgeTakenCount(L, BackedgeTakenCount) && "precondition");
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
Value *CmpIndVar;
if (L->getExitingBlock() == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
SE->getAddExpr(BackedgeTakenCount,
SE->getConstant(BackedgeTakenCount->getType(), 1));
if ((isa<SCEVConstant>(N) && !N->isZero()) ||
SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
// No overflow. Cast the sum.
RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
} else {
// Potential overflow. Cast before doing the add.
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
RHS = SE->getAddExpr(RHS,
SE->getConstant(IndVar->getType(), 1));
// The BackedgeTaken expression contains the number of times that the
// backedge branches to the loop header. This is one less than the
// number of times the loop executes, so use the incremented indvar.
CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
} else {
// We have to use the preincremented value...
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
CmpIndVar = IndVar;
}
// Expand the code for the iteration count.
assert(SE->isLoopInvariant(RHS, L) &&
"Computed iteration count is not loop invariant!");
Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
// Insert a new icmp_ne or icmp_eq instruction before the branch.
ICmpInst::Predicate Opcode;
if (L->contains(BI->getSuccessor(0)))
DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t"
<< (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
<< " RHS:\t" << *RHS << "\n");
Owen Anderson
committed
ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
Value *OrigCond = BI->getCondition();
// It's tempting to use replaceAllUsesWith here to fully replace the old
// comparison, but that's not immediately safe, since users of the old
// comparison may not be dominated by the new comparison. Instead, just
// update the branch to use the new comparison; in the common case this
// will make old comparison dead.
BI->setCondition(Cond);
++NumLFTR;
Changed = true;
return Cond;
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
// Verify the input to the pass in already in LCSSA form.
assert(L->isLCSSAForm(*DT));
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitBlocks[i];
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
// SCEV only supports integer expressions for now.
if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
continue;
// It's necessary to tell ScalarEvolution about this explicitly so that
// it can walk the def-use list and forget all SCEVs, as it may not be
// watching the PHI itself. Once the new exit value is in place, there
// may not be a def-use connection between the loop and every instruction
// which got a SCEVAddRecExpr for that loop.
SE->forgetValue(PN);
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst))
continue;
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (!SE->isLoopInvariant(ExitValue, L))
continue;
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
Chris Lattner
committed
if (!isValidRewrite(Inst, ExitVal)) {
DeadInsts.push_back(ExitVal);
continue;
}
Changed = true;
++NumReplaced;
PN->setIncomingValue(i, ExitVal);
// If this instruction is dead now, delete it.
RecursivelyDeleteTriviallyDeadInstructions(Inst);
if (NumPreds == 1) {
// Completely replace a single-pred PHI. This is safe, because the
// NewVal won't be variant in the loop, so we don't need an LCSSA phi
// node anymore.
PN->replaceAllUsesWith(ExitVal);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = cast<PHINode>(PN->clone());
NewPN->takeName(PN);
NewPN->insertBefore(PN);
PN->replaceAllUsesWith(NewPN);
PN->eraseFromParent();
}
}
}
// The insertion point instruction may have been deleted; clear it out
// so that the rewriter doesn't trip over it later.
Rewriter.clearInsertPoint();
Chris Lattner
committed
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
Chris Lattner
committed
//
BasicBlock *Header = L->getHeader();
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
HandleFloatingPointIV(L, PN);
Chris Lattner
committed
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
// re-writing, the trip count may be computable.
if (Changed)
SE->forgetLoop(L);
/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
/// loop. IVUsers is treated as a worklist. Each successive simplification may
/// push more users which may themselves be candidates for simplification.
void IndVarSimplify::SimplifyIVUsers() {
for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
Instruction *UseInst = I->getUser();
Value *IVOperand = I->getOperandValToReplace();
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
EliminateIVComparison(ICmp, IVOperand);
continue;
if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
bool IsSigned = Rem->getOpcode() == Instruction::SRem;
if (IsSigned || Rem->getOpcode() == Instruction::URem) {
EliminateIVRemainder(Rem, IVOperand, IsSigned);
}
}
void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
unsigned IVOperIdx = 0;
ICmpInst::Predicate Pred = ICmp->getPredicate();
if (IVOperand != ICmp->getOperand(0)) {
// Swapped
assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
IVOperIdx = 1;
Pred = ICmpInst::getSwappedPredicate(Pred);
}
// Get the SCEVs for the ICmp operands.
const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
// Simplify unnecessary loops away.
const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
S = SE->getSCEVAtScope(S, ICmpLoop);
X = SE->getSCEVAtScope(X, ICmpLoop);
// If the condition is always true or always false, replace it with
// a constant value.
if (SE->isKnownPredicate(Pred, S, X))
ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
else
return;
DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
Changed = true;
void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
Value *IVOperand,
bool IsSigned) {
// We're only interested in the case where we know something about
// the numerator.
if (IVOperand != Rem->getOperand(0))
return;
// Get the SCEVs for the ICmp operands.
const SCEV *S = SE->getSCEV(Rem->getOperand(0));
const SCEV *X = SE->getSCEV(Rem->getOperand(1));
// Simplify unnecessary loops away.
const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
S = SE->getSCEVAtScope(S, ICmpLoop);
X = SE->getSCEVAtScope(X, ICmpLoop);
// i % n --> i if i is in [0,n).
if ((!IsSigned || SE->isKnownNonNegative(S)) &&
SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
S, X))
Rem->replaceAllUsesWith(Rem->getOperand(0));
else {
// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
const SCEV *LessOne =
SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
if (IsSigned && !SE->isKnownNonNegative(LessOne))
if (!SE->isKnownPredicate(IsSigned ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
LessOne, X))
return;
ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
Rem->getOperand(0), Rem->getOperand(1),
"tmp");
SelectInst *Sel =
SelectInst::Create(ICmp,
ConstantInt::get(Rem->getType(), 0),
Rem->getOperand(0), "tmp", Rem);
Rem->replaceAllUsesWith(Sel);
}
// Inform IVUsers about the new users.
if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
IU->AddUsersIfInteresting(I);
DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
Changed = true;
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// If LoopSimplify form is not available, stay out of trouble. Some notes:
// - LSR currently only supports LoopSimplify-form loops. Indvars'
// canonicalization can be a pessimization without LSR to "clean up"
// afterwards.
// - We depend on having a preheader; in particular,
// Loop::getCanonicalInductionVariable only supports loops with preheaders,
// and we're in trouble if we can't find the induction variable even when
// we've manually inserted one.
if (!L->isLoopSimplifyForm())
return false;
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>();
TD = getAnalysisIfAvailable<TargetData>();
DeadInsts.clear();
// If there are any floating-point recurrences, attempt to
// transform them to use integer recurrences.
RewriteNonIntegerIVs(L);
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner
committed
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE);
if (DisableIVRewrite)
Rewriter.disableCanonicalMode();
const Type *LargestType = 0;
if (DisableIVRewrite) {
LargestType = WidenIVs(L, Rewriter);
}
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values of
// the current expressions.
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
RewriteLoopExitValues(L, Rewriter);
// Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted.
bool NeedCannIV = false;
bool ExpandBECount = canExpandBackedgeTakenCount(L, BackedgeTakenCount);
if (ExpandBECount) {
// If we have a known trip count and a single exit block, we'll be
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
NeedCannIV = true;
const Type *Ty = BackedgeTakenCount->getType();
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattner
committed
}
if (!DisableIVRewrite) {
for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
NeedCannIV = true;
const Type *Ty =
SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
Chris Lattner
committed
}
// Now that we know the largest of the induction variable expressions
// in this loop, insert a canonical induction variable of the largest size.
PHINode *IndVar = 0;
if (NeedCannIV) {
// Check to see if the loop already has any canonical-looking induction
// variables. If any are present and wider than the planned canonical
// induction variable, temporarily remove them, so that the Rewriter
// doesn't attempt to reuse them.
SmallVector<PHINode *, 2> OldCannIVs;
while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
if (SE->getTypeSizeInBits(OldCannIV->getType()) >
SE->getTypeSizeInBits(LargestType))
OldCannIV->removeFromParent();
else
break;
OldCannIVs.push_back(OldCannIV);
IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
++NumInserted;
Changed = true;
DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// any old canonical-looking variables after it so that the IR remains
// consistent. They will be deleted as part of the dead-PHI deletion at
// the end of the pass.
while (!OldCannIVs.empty()) {
PHINode *OldCannIV = OldCannIVs.pop_back_val();
OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
}
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
ICmpInst *NewICmp = 0;
if (ExpandBECount) {
assert(canExpandBackedgeTakenCount(L, BackedgeTakenCount) &&
"canonical IV disrupted BackedgeTaken expansion");
assert(NeedCannIV &&
"LinearFunctionTestReplace requires a canonical induction variable");
NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
Rewriter);
}
// Rewrite IV-derived expressions.
if (!DisableIVRewrite)
RewriteIVExpressions(L, Rewriter);
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted in the loop below, causing the AssertingVH in the cache to
// trigger.
Rewriter.clear();
// Now that we're done iterating through lists, clean up any instructions
// which are now dead.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
// The Rewriter may not be used from this point on.
// Loop-invariant instructions in the preheader that aren't used in the
// loop may be sunk below the loop to reduce register pressure.
SinkUnusedInvariants(L);
// For completeness, inform IVUsers of the IV use in the newly-created
// loop exit test instruction.
if (NewICmp)
IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
// Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader());
// Check a post-condition.
assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
return Changed;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
// Loop-invariant values are safe.
if (SE->isLoopInvariant(S, L)) return true;
// Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
// to transform them into efficient code.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
return AR->isAffine();
// An add is safe it all its operands are safe.
if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
E = Commutative->op_end(); I != E; ++I)
if (!isSafe(*I, L, SE)) return false;
return true;
}
// A cast is safe if its operand is.
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
return isSafe(C->getOperand(), L, SE);
// A udiv is safe if its operands are.
if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
return isSafe(UD->getLHS(), L, SE) &&
isSafe(UD->getRHS(), L, SE);
// SCEVUnknown is always safe.
if (isa<SCEVUnknown>(S))
return true;
// Nothing else is safe.
return false;
}
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/// Widen the type of any induction variables that are sign/zero extended and
/// remove the [sz]ext uses.
///
/// FIXME: This may currently create extra IVs which could increase regpressure
/// (without LSR to cleanup).
///
/// FIXME: may factor this with RewriteIVExpressions once it stabilizes.
const Type *IndVarSimplify::WidenIVs(Loop *L, SCEVExpander &Rewriter) {
const Type *LargestType = 0;
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Instruction *ExtInst = UI->getUser();
if (!isa<SExtInst>(ExtInst) && !isa<ZExtInst>(ExtInst))
continue;
const SCEV *AR = SE->getSCEV(ExtInst);
// Only widen this IV is SCEV tells us it's safe.
if (!isa<SCEVAddRecExpr>(AR) && !isa<SCEVAddExpr>(AR))
continue;
if (!L->contains(UI->getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
if (SE->isLoopInvariant(ExitVal, L))
AR = ExitVal;
}
// Only expand affine recurences.
if (!isSafe(AR, L, SE))
continue;
const Type *Ty =
SE->getEffectiveSCEVType(ExtInst->getType());
// Only remove [sz]ext if the wide IV is still a native type.
//
// FIXME: We may be able to remove the copy of this logic in
// IVUsers::AddUsersIfInteresting.
uint64_t Width = SE->getTypeSizeInBits(Ty);
if (Width > 64 || (TD && !TD->isLegalInteger(Width)))
continue;
// Now expand it into actual Instructions and patch it into place.
//
// FIXME: avoid creating a new IV.
Value *NewVal = Rewriter.expandCodeFor(AR, Ty, ExtInst);
DEBUG(dbgs() << "INDVARS: Widened IV '" << *AR << "' " << *ExtInst << '\n'
<< " into = " << *NewVal << "\n");
if (!isValidRewrite(ExtInst, NewVal)) {
DeadInsts.push_back(NewVal);
continue;
}
++NumWidened;
Changed = true;
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = Ty;
SE->forgetValue(ExtInst);
// Patch the new value into place.
if (ExtInst->hasName())
NewVal->takeName(ExtInst);
ExtInst->replaceAllUsesWith(NewVal);
// The old value may be dead now.
DeadInsts.push_back(ExtInst);
// UI is a linked list iterator, so AddUsersIfInteresting effectively pushes
// nodes on the worklist.
IU->AddUsersIfInteresting(ExtInst);
}
return LargestType;
}
void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// Rewrite all induction variable expressions in terms of the canonical
// induction variable.
//
// If there were induction variables of other sizes or offsets, manually
// add the offsets to the primary induction variable and cast, avoiding
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
const Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(UI->getUser())) {
const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
if (SE->isLoopInvariant(ExitVal, L))
AR = ExitVal;
}
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
if (!isSafe(AR, L, SE))
continue;
// Determine the insertion point for this user. By default, insert
// immediately before the user. The SCEVExpander class will automatically
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
Instruction *InsertPt = User;
if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
if (PHI->getIncomingValue(i) == Op) {
if (InsertPt == User)
InsertPt = PHI->getIncomingBlock(i)->getTerminator();
else
InsertPt =
DT->findNearestCommonDominator(InsertPt->getParent(),
PHI->getIncomingBlock(i))
->getTerminator();
}
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
if (!isValidRewrite(Op, NewVal)) {
DeadInsts.push_back(NewVal);
continue;
}
// Inform ScalarEvolution that this value is changing. The change doesn't
// affect its value, but it does potentially affect which use lists the
// value will be on after the replacement, which affects ScalarEvolution's
// ability to walk use lists and drop dangling pointers when a value is
// deleted.
SE->forgetValue(User);
// Patch the new value into place.
if (Op->hasName())
NewVal->takeName(Op);
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
++NumRemoved;
Changed = true;
// The old value may be dead now.
DeadInsts.push_back(Op);
Chris Lattner
committed
}
}
/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
BasicBlock *ExitBlock = L->getExitBlock();
if (!ExitBlock) return;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return;
Instruction *InsertPt = ExitBlock->getFirstNonPHI();
BasicBlock::iterator I = Preheader->getTerminator();
while (I != Preheader->begin()) {
--I;
// New instructions were inserted at the end of the preheader.
if (isa<PHINode>(I))
break;
// Don't move instructions which might have side effects, since the side
// effects need to complete before instructions inside the loop. Also don't
// move instructions which might read memory, since the loop may modify
// memory. Note that it's okay if the instruction might have undefined
// behavior: LoopSimplify guarantees that the preheader dominates the exit
// block.
if (I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
// Skip debug info intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Don't sink static AllocaInsts out of the entry block, which would
// turn them into dynamic allocas!
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (AI->isStaticAlloca())
continue;
// Determine if there is a use in or before the loop (direct or
// otherwise).
bool UsedInLoop = false;
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
User *U = *UI;
BasicBlock *UseBB = cast<Instruction>(U)->getParent();
if (PHINode *P = dyn_cast<PHINode>(U)) {
unsigned i =
PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
UseBB = P->getIncomingBlock(i);
}
if (UseBB == Preheader || L->contains(UseBB)) {
UsedInLoop = true;
break;
}
}
// If there is, the def must remain in the preheader.
if (UsedInLoop)
continue;
// Otherwise, sink it to the exit block.
Instruction *ToMove = I;
bool Done = false;
if (I != Preheader->begin()) {
// Skip debug info intrinsics.
do {
--I;
} while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
Done = true;
} else {
Done = true;
ToMove->moveBefore(InsertPt);
if (Done) break;
InsertPt = ToMove;
}
}
/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {