Newer
Older
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#include "SplitKit.h"
Jakob Stoklund Olesen
committed
#include "LiveRangeEdit.h"
Jakob Stoklund Olesen
committed
#include "VirtRegMap.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineDominators.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: mf_(mf),
lis_(lis),
loops_(mli),
tii_(*mf.getTarget().getInstrInfo()),
curli_(0) {}
void SplitAnalysis::clear() {
usingInstrs_.clear();
usingBlocks_.clear();
usingLoops_.clear();
Jakob Stoklund Olesen
committed
curli_ = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = mf_.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
continue;
MachineBasicBlock *MBB = MI->getParent();
if (usingBlocks_[MBB]++)
continue;
for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
Loop = Loop->getParentLoop())
Jakob Stoklund Olesen
committed
usingLoops_[Loop]++;
<< usingInstrs_.size() << " instrs, "
<< usingBlocks_.size() << " blocks, "
}
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
unsigned count = usingBlocks_.lookup(*I);
OS << " BB#" << (*I)->getNumber();
if (count)
OS << '(' << count << ')';
}
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
OS << "Loop:";
print(B.Loop, OS);
OS << ", preds:";
print(B.Preds, OS);
OS << ", exits:";
print(B.Exits, OS);
}
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
continue;
// It must be an unrelated block.
DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
return OutsideLoop;
}
return use;
}
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has predecessors from outside the loop
/// periphery.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
Jakob Stoklund Olesen
committed
// A critical exit block has curli live-in, and has a predecessor that is not
// in the loop nor a loop predecessor. For such an exit block, the edges
// carrying the new variable must be moved to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Exit = *I;
// A single-predecessor exit block is definitely not a critical edge.
if (Exit->pred_size() == 1)
// This exit may not have curli live in at all. No need to split.
if (!lis_.isLiveInToMBB(*curli_, Exit))
// Does this exit block have a predecessor that is not a loop block or loop
// predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
PE = Exit->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Exit);
Jakob Stoklund Olesen
committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalPreds) {
CriticalPreds.clear();
// A critical predecessor block has curli live-out, and has a successor that
// has curli live-in and is not in the loop nor a loop exit block. For such a
// predecessor block, we must carry the value in both the 'inside' and
// 'outside' registers.
for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
I != E; ++I) {
const MachineBasicBlock *Pred = *I;
// Definitely not a critical edge.
if (Pred->succ_size() == 1)
continue;
// This block may not have curli live out at all if there is a PHI.
if (!lis_.isLiveOutOfMBB(*curli_, Pred))
continue;
// Does this block have a successor outside the loop?
for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
SE = Pred->succ_end(); SI != SE; ++SI) {
const MachineBasicBlock *Succ = *SI;
if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
continue;
if (!lis_.isLiveInToMBB(*curli_, Succ))
continue;
// This is a critical predecessor block.
CriticalPreds.insert(Pred);
break;
}
}
}
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == mf_.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
curli_ = li;
}
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
assert(curli_ && "Call analyze() before getBestSplitLoop");
if (usingLoops_.empty())
return 0;
Jakob Stoklund Olesen
committed
LoopPtrSet Loops;
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
Jakob Stoklund Olesen
committed
// We split around loops where curli is used outside the periphery.
Jakob Stoklund Olesen
committed
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
E = usingLoops_.end(); I != E; ++I) {
Jakob Stoklund Olesen
committed
const MachineLoop *Loop = I->first;
getLoopBlocks(Loop, Blocks);
DEBUG({ dbgs() << " "; print(Blocks, dbgs()); });
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
break;
case MultiPeripheral:
Jakob Stoklund Olesen
committed
// FIXME: We could split a live range with multiple uses in a peripheral
// block and still make progress. However, it is possible that splitting
// another live range will insert copies into a peripheral block, and
// there is a small chance we can enter an infinity loop, inserting copies
// forever.
// For safety, stick to splitting live ranges with uses outside the
// periphery.
DEBUG(dbgs() << ": multiple peripheral uses\n");
break;
continue;
case SinglePeripheral:
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
Jakob Stoklund Olesen
committed
Loops.insert(Loop);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size()
<< " candidate loops.\n");
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
return Best;
}
//===----------------------------------------------------------------------===//
// LiveIntervalMap
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
// Work around the fact that the std::pair constructors are broken for pointer
// pairs in some implementations. makeVV(x, 0) works.
static inline std::pair<const VNInfo*, VNInfo*>
makeVV(const VNInfo *a, VNInfo *b) {
return std::make_pair(a, b);
}
Jakob Stoklund Olesen
committed
void LiveIntervalMap::reset(LiveInterval *li) {
li_ = li;
valueMap_.clear();
Jakob Stoklund Olesen
committed
liveOutCache_.clear();
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
ValueMap::const_iterator i = valueMap_.find(ParentVNI);
return i != valueMap_.end() && i->second == 0;
}
// defValue - Introduce a li_ def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
Jakob Stoklund Olesen
committed
// Create a new value.
VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
// Preserve the PHIDef bit.
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
VNI->setIsPHIDef(true);
Jakob Stoklund Olesen
committed
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
Jakob Stoklund Olesen
committed
// This is now a complex def. Mark with a NULL in valueMap.
Jakob Stoklund Olesen
committed
if (!InsP.second)
InsP.first->second = 0;
return VNI;
}
Jakob Stoklund Olesen
committed
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
bool *simple) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Jakob Stoklund Olesen
committed
valueMap_.insert(makeVV(ParentVNI, 0));
// This was an unknown value. Create a simple mapping.
Jakob Stoklund Olesen
committed
if (InsP.second) {
if (simple) *simple = true;
Jakob Stoklund Olesen
committed
return InsP.first->second = li_->createValueCopy(ParentVNI,
lis_.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
}
// This was a simple mapped value.
Jakob Stoklund Olesen
committed
if (InsP.first->second) {
if (simple) *simple = true;
return InsP.first->second;
Jakob Stoklund Olesen
committed
}
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
Jakob Stoklund Olesen
committed
if (simple) *simple = false;
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
return VNI;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
Jakob Stoklund Olesen
committed
// Perform a search for all predecessor blocks where we know the dominating
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
<< " at " << Idx << " in " << *li_ << '\n');
// Blocks where li_ should be live-in.
SmallVector<MachineDomTreeNode*, 16> LiveIn;
LiveIn.push_back(mdt_[IdxMBB]);
// Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != LiveIn.size(); ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
std::pair<LiveOutMap::iterator,bool> LOIP =
liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
// Yes, we have been here before.
if (!LOIP.second) {
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
dbgs() << " known valno #" << VNI->id
Jakob Stoklund Olesen
committed
<< " at BB#" << Pred->getNumber() << '\n');
continue;
}
// Does Pred provide a live-out value?
SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
if (VNInfo *VNI = extendTo(Pred, Last)) {
MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
DEBUG(dbgs() << " found valno #" << VNI->id
Jakob Stoklund Olesen
committed
<< " from BB#" << DefMBB->getNumber()
<< " at BB#" << Pred->getNumber() << '\n');
Jakob Stoklund Olesen
committed
LiveOutPair &LOP = LOIP.first->second;
LOP.first = VNI;
Jakob Stoklund Olesen
committed
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != IdxMBB)
LiveIn.push_back(mdt_[Pred]);
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// We may need to add phi-def values to preserve the SSA form.
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
VNInfo *IdxVNI = 0;
unsigned Changes;
do {
Changes = 0;
DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
// Propagate live-out values down the dominator tree, inserting phi-defs when
// necessary. Since LiveIn was created by a BFS, going backwards makes it more
// likely for us to visit immediate dominators before their children.
for (unsigned i = LiveIn.size(); i; --i) {
MachineDomTreeNode *Node = LiveIn[i-1];
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom;
// Get the IDom live-out value.
if (!needPHI) {
LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
if (I != liveOutCache_.end())
IDomValue = I->second;
else
// If IDom is outside our set of live-out blocks, there must be new
// defs, and we need a phi-def here.
needPHI = true;
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// IDom dominates all of our predecessors, but it may not be the immediate
// dominator. Check if any of them have live-out values that are properly
// dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair Value = liveOutCache_[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (mdt_.dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Create a phi-def if required.
if (needPHI) {
++Changes;
SlotIndex Start = lis_.getMBBStartIdx(MBB);
VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " phi-def #" << VNI->id << " at " << Start << '\n');
// We no longer need li_ to be live-in.
LiveIn.erase(LiveIn.begin()+(i-1));
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
if (MBB == IdxMBB)
IdxVNI = VNI;
// Check if we need to update live-out info.
LiveOutMap::iterator I = liveOutCache_.find(MBB);
if (I == liveOutCache_.end() || I->second.second == Node) {
// We already have a live-out defined in MBB, so this must be IdxMBB.
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
} else {
// This phi-def is also live-out, so color the whole block.
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
I->second = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
Jakob Stoklund Olesen
committed
// No phi-def here. Remember incoming value for IdxMBB.
Jakob Stoklund Olesen
committed
if (MBB == IdxMBB)
IdxVNI = IDomValue.first;
Jakob Stoklund Olesen
committed
// Propagate IDomValue if needed:
// MBB is live-out and doesn't define its own value.
Jakob Stoklund Olesen
committed
LiveOutMap::iterator I = liveOutCache_.find(MBB);
Jakob Stoklund Olesen
committed
if (I != liveOutCache_.end() && I->second.second != Node &&
I->second.first != IDomValue.first) {
Jakob Stoklund Olesen
committed
++Changes;
I->second = IDomValue;
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " idom valno #" << IDomValue.first->id
<< " from BB#" << IDom->getBlock()->getNumber() << '\n');
}
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " - made " << Changes << " changes.\n");
} while (Changes);
Jakob Stoklund Olesen
committed
assert(IdxVNI && "Didn't find value for Idx");
Jakob Stoklund Olesen
committed
#ifndef NDEBUG
// Check the liveOutCache_ invariants.
for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
I != E; ++I) {
assert(I->first && "Null MBB entry in cache");
assert(I->second.first && "Null VNInfo in cache");
assert(I->second.second && "Null DomTreeNode in cache");
if (I->second.second->getBlock() == I->first)
continue;
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
PE = I->first->pred_end(); PI != PE; ++PI)
assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
}
#endif
Jakob Stoklund Olesen
committed
// Since we went through the trouble of a full BFS visiting all reaching defs,
// the values in LiveIn are now accurate. No more phi-defs are needed
// for these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
Jakob Stoklund Olesen
committed
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
SlotIndex Start = lis_.getMBBStartIdx(MBB);
if (MBB == IdxMBB) {
li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
continue;
}
// Anything in LiveIn other than IdxMBB is live-through.
VNInfo *VNI = liveOutCache_.lookup(MBB).first;
assert(VNI && "Missing block value");
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
}
return IdxVNI;
}
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
if (I == li_->begin())
return 0;
--I;
if (I->end <= lis_.getMBBStartIdx(MBB))
Jakob Stoklund Olesen
committed
if (I->end <= Idx)
I->end = Idx.getNextSlot();
return I->valno;
}
// addSimpleRange - Add a simple range from parentli_ to li_.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
Jakob Stoklund Olesen
committed
bool simple;
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
// A simple mapping is easy.
if (simple) {
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
if (MBB == MBBE) {
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
Start = lis_.getMBBStartIdx(MBB);
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
mapValue(ParentVNI, Start)));
}
// Final block.
Start = lis_.getMBBStartIdx(MBB);
if (Start != End)
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
if (I != B) {
--I;
if (I->end > Start)
addSimpleRange(Start, std::min(End, I->end), I->valno);
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::defByCopy(const VNInfo *ParentVNI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
Jakob Stoklund Olesen
committed
const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
get(TargetOpcode::COPY);
Jakob Stoklund Olesen
committed
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg)
.addReg(parentli_.reg);
Jakob Stoklund Olesen
committed
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
VNInfo *VNI = defValue(ParentVNI, DefIdx);
VNI->setCopy(MI);
li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
return VNI;
}
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
Jakob Stoklund Olesen
committed
SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveIntervals &lis,
VirtRegMap &vrm,
MachineDominatorTree &mdt,
Jakob Stoklund Olesen
committed
LiveRangeEdit &edit)
Jakob Stoklund Olesen
committed
: sa_(sa), lis_(lis), vrm_(vrm),
mri_(vrm.getMachineFunction().getRegInfo()),
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
Jakob Stoklund Olesen
committed
edit_(edit),
Jakob Stoklund Olesen
committed
dupli_(lis_, mdt, edit.getParent()),
openli_(lis_, mdt, edit.getParent())
Jakob Stoklund Olesen
committed
{
}
Jakob Stoklund Olesen
committed
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
Jakob Stoklund Olesen
committed
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
Jakob Stoklund Olesen
committed
return true;
return false;
}
Jakob Stoklund Olesen
committed
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!openli_.getLI() && "Previous LI not closed before openIntv");
Jakob Stoklund Olesen
committed
if (!dupli_.getLI())
Jakob Stoklund Olesen
committed
dupli_.reset(&edit_.create(mri_, lis_, vrm_));
Jakob Stoklund Olesen
committed
openli_.reset(&edit_.create(mri_, lis_, vrm_));
Jakob Stoklund Olesen
committed
}
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
DEBUG(dbgs() << " enterIntvBefore " << Idx);
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
Jakob Stoklund Olesen
committed
return;
DEBUG(dbgs() << ": valno " << ParentVNI->id);
Jakob Stoklund Olesen
committed
truncatedValues.insert(ParentVNI);
Jakob Stoklund Olesen
committed
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
Jakob Stoklund Olesen
committed
VNInfo *VNI = openli_.defByCopy(ParentVNI, *MI->getParent(), MI);
openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
/// enterIntvAtEnd - Enter openli at the end of MBB.
Jakob Stoklund Olesen
committed
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
Jakob Stoklund Olesen
committed
SlotIndex End = lis_.getMBBEndIdx(&MBB);
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
Jakob Stoklund Olesen
committed
return;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
Jakob Stoklund Olesen
committed
truncatedValues.insert(ParentVNI);
Jakob Stoklund Olesen
committed
VNInfo *VNI = openli_.defByCopy(ParentVNI, MBB, MBB.getFirstTerminator());
Jakob Stoklund Olesen
committed
// Make sure openli is live out of MBB.
openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
}
/// useIntv - indicate that all instructions in MBB should use openli.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
Jakob Stoklund Olesen
committed
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before useIntv");
Jakob Stoklund Olesen
committed
openli_.addRange(Start, End);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
<< *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
}
/// leaveIntvAfter - Leave openli after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
Jakob Stoklund Olesen
committed
// The interval must be live beyond the instruction at Idx.
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
DEBUG(dbgs() << ": valno " << ParentVNI->id);
MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
MachineBasicBlock *MBB = MII->getParent();
Jakob Stoklund Olesen
committed
VNInfo *VNI = dupli_.defByCopy(ParentVNI, *MBB, llvm::next(MII));
Jakob Stoklund Olesen
committed
// Finally we must make sure that openli is properly extended from Idx to the
// new copy.
openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
Jakob Stoklund Olesen
committed
// We are going to insert a back copy, so we must have a dupli_.
Jakob Stoklund Olesen
committed
VNInfo *VNI = dupli_.defByCopy(ParentVNI, MBB,
MBB.SkipPHIsAndLabels(MBB.begin()));
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Finally we must make sure that openli is properly extended from Start to
// the new copy.
openli_.addSimpleRange(Start, VNI->def, ParentVNI);
DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
}
/// closeIntv - Indicate that we are done editing the currently open
Jakob Stoklund Olesen
committed
/// LiveInterval, and ranges can be trimmed.
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before closeIntv");
DEBUG(dbgs() << " closeIntv cleaning up\n");
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " open " << *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
openli_.reset(0);
}
Jakob Stoklund Olesen
committed
/// rewrite - Rewrite all uses of reg to use the new registers.
void SplitEditor::rewrite(unsigned reg) {
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
RE = mri_.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
unsigned OpNum = RI.getOperandNo();
Jakob Stoklund Olesen
committed
MachineInstr *MI = MO.getParent();
++RI;
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
// FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
SlotIndex Idx = lis_.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
LiveInterval *LI = 0;
Jakob Stoklund Olesen
committed
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
++I) {
LiveInterval *testli = *I;
Jakob Stoklund Olesen
committed
if (testli->liveAt(Idx)) {
LI = testli;
break;
}
}
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
Jakob Stoklund Olesen
committed
assert(LI && "No register was live at use");
MO.setReg(LI->reg);
if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
DEBUG(dbgs() << '\t' << *MI);
Jakob Stoklund Olesen
committed
}
}
Jakob Stoklund Olesen
committed
void
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
Jakob Stoklund Olesen
committed
// Build vector of iterator pairs from the intervals.
typedef std::pair<LiveInterval::const_iterator,
LiveInterval::const_iterator> IIPair;
SmallVector<IIPair, 8> Iters;
Jakob Stoklund Olesen
committed
for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
++LI) {
if (*LI == dupli_.getLI())
continue;
Jakob Stoklund Olesen
committed
LiveInterval::const_iterator I = (*LI)->find(Start);
LiveInterval::const_iterator E = (*LI)->end();
Jakob Stoklund Olesen
committed
if (I != E)
Iters.push_back(std::make_pair(I, E));
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
SlotIndex sidx = Start;
Jakob Stoklund Olesen
committed
// Break [Start;End) into segments that don't overlap any intervals.
for (;;) {
SlotIndex next = sidx, eidx = End;
// Find overlapping intervals.
Jakob Stoklund Olesen
committed
for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
LiveInterval::const_iterator I = Iters[i].first;
Jakob Stoklund Olesen
committed
// Interval I is overlapping [sidx;eidx). Trim sidx.
if (I->start <= sidx) {
sidx = I->end;
Jakob Stoklund Olesen
committed
// Move to the next run, remove iters when all are consumed.
I = ++Iters[i].first;
if (I == Iters[i].second) {
Iters.erase(Iters.begin() + i);
--i;
Jakob Stoklund Olesen
committed
continue;
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
}
// Trim eidx too if needed.
if (I->start >= eidx)
continue;
eidx = I->start;
Jakob Stoklund Olesen
committed
next = I->end;
Jakob Stoklund Olesen
committed
}
// Now, [sidx;eidx) doesn't overlap anything in intervals_.
if (sidx < eidx)
dupli_.addSimpleRange(sidx, eidx, VNI);
// If the interval end was truncated, we can try again from next.
if (next <= sidx)
break;
sidx = next;
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
void SplitEditor::computeRemainder() {
Jakob Stoklund Olesen
committed
// First we need to fill in the live ranges in dupli.
// If values were redefined, we need a full recoloring with SSA update.
// If values were truncated, we only need to truncate the ranges.
// If values were partially rematted, we should shrink to uses.
// If values were fully rematted, they should be omitted.
// FIXME: If a single value is redefined, just move the def and truncate.
Jakob Stoklund Olesen
committed
LiveInterval &parent = edit_.getParent();
Jakob Stoklund Olesen
committed
// Values that are fully contained in the split intervals.
SmallPtrSet<const VNInfo*, 8> deadValues;
// Map all curli values that should have live defs in dupli.
Jakob Stoklund Olesen
committed
for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
E = parent.vni_end(); I != E; ++I) {
Jakob Stoklund Olesen
committed
const VNInfo *VNI = *I;
Jakob Stoklund Olesen
committed
// Don't transfer unused values to the new intervals.
if (VNI->isUnused())
continue;
Jakob Stoklund Olesen
committed
// Original def is contained in the split intervals.
if (intervalsLiveAt(VNI->def)) {
// Did this value escape?
if (dupli_.isMapped(VNI))
truncatedValues.insert(VNI);
else
deadValues.insert(VNI);
continue;
}
// Add minimal live range at the definition.
VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
}
// Add all ranges to dupli.
Jakob Stoklund Olesen
committed
for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
Jakob Stoklund Olesen
committed
I != E; ++I) {
const LiveRange &LR = *I;
if (truncatedValues.count(LR.valno)) {
// recolor after removing intervals_.
addTruncSimpleRange(LR.start, LR.end, LR.valno);
} else if (!deadValues.count(LR.valno)) {
// recolor without truncation.
dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
}
}
Jakob Stoklund Olesen
committed
// Extend dupli_ to be live out of any critical loop predecessors.
// This means we have multiple registers live out of those blocks.
// The alternative would be to split the critical edges.
if (criticalPreds_.empty())
return;
for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
E = criticalPreds_.end(); I != E; ++I)
dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
criticalPreds_.clear();
Jakob Stoklund Olesen
committed
}
void SplitEditor::finish() {
assert(!openli_.getLI() && "Previous LI not closed before rewrite");
assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
// Complete dupli liveness.
computeRemainder();
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Get rid of unused values and set phi-kill flags.
Jakob Stoklund Olesen
committed
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
(*I)->RenumberValues(lis_);
Jakob Stoklund Olesen
committed
// Rewrite instructions.
Jakob Stoklund Olesen
committed
rewrite(edit_.getReg());
Jakob Stoklund Olesen
committed
// Now check if any registers were separated into multiple components.
ConnectedVNInfoEqClasses ConEQ(lis_);
for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
// Don't use iterators, they are invalidated by create() below.
LiveInterval *li = edit_.get(i);
unsigned NumComp = ConEQ.Classify(li);
if (NumComp <= 1)
continue;
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
SmallVector<LiveInterval*, 8> dups;
dups.push_back(li);
for (unsigned i = 1; i != NumComp; ++i)
dups.push_back(&edit_.create(mri_, lis_, vrm_));
ConEQ.Distribute(&dups[0]);
// Rewrite uses to the new regs.
rewrite(li->reg);
}
Jakob Stoklund Olesen
committed
// Calculate spill weight and allocation hints for new intervals.
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
Jakob Stoklund Olesen
committed
for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
LiveInterval &li = **I;
vrai.CalculateRegClass(li.reg);
Jakob Stoklund Olesen
committed
vrai.CalculateWeightAndHint(li);
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
<< ":" << li << '\n');
Jakob Stoklund Olesen
committed
}