Newer
Older
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "splitter"
#include "SplitKit.h"
Jakob Stoklund Olesen
committed
#include "VirtRegMap.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: mf_(mf),
lis_(lis),
loops_(mli),
tii_(*mf.getTarget().getInstrInfo()),
curli_(0) {}
void SplitAnalysis::clear() {
usingInstrs_.clear();
usingBlocks_.clear();
usingLoops_.clear();
Jakob Stoklund Olesen
committed
curli_ = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = mf_.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
continue;
MachineBasicBlock *MBB = MI->getParent();
if (usingBlocks_[MBB]++)
continue;
if (MachineLoop *Loop = loops_.getLoopFor(MBB))
Jakob Stoklund Olesen
committed
usingLoops_[Loop]++;
<< usingInstrs_.size() << " instrs, "
<< usingBlocks_.size() << " blocks, "
}
Jakob Stoklund Olesen
committed
/// removeUse - Update statistics by noting that MI no longer uses curli.
void SplitAnalysis::removeUse(const MachineInstr *MI) {
if (!usingInstrs_.erase(MI))
return;
// Decrement MBB count.
const MachineBasicBlock *MBB = MI->getParent();
BlockCountMap::iterator bi = usingBlocks_.find(MBB);
assert(bi != usingBlocks_.end() && "MBB missing");
assert(bi->second && "0 count in map");
if (--bi->second)
return;
// No more uses in MBB.
usingBlocks_.erase(bi);
// Decrement loop count.
MachineLoop *Loop = loops_.getLoopFor(MBB);
if (!Loop)
return;
LoopCountMap::iterator li = usingLoops_.find(Loop);
assert(li != usingLoops_.end() && "Loop missing");
assert(li->second && "0 count in map");
if (--li->second)
return;
// No more blocks in Loop.
usingLoops_.erase(li);
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
continue;
// It must be an unrelated block.
return OutsideLoop;
}
return use;
}
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
/// blocks that need special treatment into CriticalExits.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
// A critical exit block contains a phi def of curli, and has a predecessor
// that is not in the loop nor a loop predecessor.
// For such an exit block, the edges carrying the new variable must be moved
// to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
// This exit may not have curli live in at all. No need to split.
if (!SuccVNI)
continue;
// If this is not a PHI def, it is either using a value from before the
// loop, or a value defined inside the loop. Both are safe.
if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
continue;
// This exit block does have a PHI. Does it also have a predecessor that is
// not a loop block or loop predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Succ);
break;
}
}
}
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == mf_.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
curli_ = li;
}
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
assert(curli_ && "Call analyze() before getBestSplitLoop");
if (usingLoops_.empty())
return 0;
LoopPtrSet Loops, SecondLoops;
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
// Find first-class and second class candidate loops.
// We prefer to split around loops where curli is used outside the periphery.
Jakob Stoklund Olesen
committed
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
E = usingLoops_.end(); I != E; ++I) {
Jakob Stoklund Olesen
committed
const MachineLoop *Loop = I->first;
getLoopBlocks(Loop, Blocks);
// FIXME: We need an SSA updater to properly handle multiple exit blocks.
if (Blocks.Exits.size() > 1) {
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " multiple exits from " << *Loop);
LoopPtrSet *LPS = 0;
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
break;
case MultiPeripheral:
break;
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " contained in " << *Loop);
continue;
case SinglePeripheral:
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " single peripheral use in " << *Loop);
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from "
Jakob Stoklund Olesen
committed
<< *Loop);
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
assert(LPS);
Jakob Stoklund Olesen
committed
LPS->insert(Loop);
DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + "
<< SecondLoops.size() << " candidate loops.\n");
// If there are no first class loops available, look at second class loops.
if (Loops.empty())
Loops = SecondLoops;
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
return Best;
}
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
/// may be an advantage to split curli for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
// If curli is local to one block, there is no point to splitting it.
if (usingBlocks_.size() <= 1)
return false;
// Add blocks with multiple uses.
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I)
switch (I->second) {
case 0:
case 1:
continue;
case 2: {
// It doesn't pay to split a 2-instr block if it redefines curli.
VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
VNInfo *VN2 =
curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
// live-in and live-out with a different value.
if (VN1 && VN2 && VN1 != VN2)
continue;
} // Fall through.
default:
Blocks.insert(I->first);
}
return !Blocks.empty();
}
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// LiveIntervalMap
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
// Work around the fact that the std::pair constructors are broken for pointer
// pairs in some implementations. makeVV(x, 0) works.
static inline std::pair<const VNInfo*, VNInfo*>
makeVV(const VNInfo *a, VNInfo *b) {
return std::make_pair(a, b);
}
Jakob Stoklund Olesen
committed
void LiveIntervalMap::reset(LiveInterval *li) {
li_ = li;
valueMap_.clear();
}
Jakob Stoklund Olesen
committed
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
ValueMap::const_iterator i = valueMap_.find(ParentVNI);
return i != valueMap_.end() && i->second == 0;
}
// defValue - Introduce a li_ def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
Jakob Stoklund Olesen
committed
// Create a new value.
VNInfo *VNI = li_->getNextValue(Idx, 0, true, lis_.getVNInfoAllocator());
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
Jakob Stoklund Olesen
committed
// This is now a complex def. Mark with a NULL in valueMap.
Jakob Stoklund Olesen
committed
if (!InsP.second)
InsP.first->second = 0;
return VNI;
}
Jakob Stoklund Olesen
committed
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
bool *simple) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Jakob Stoklund Olesen
committed
valueMap_.insert(makeVV(ParentVNI, 0));
// This was an unknown value. Create a simple mapping.
Jakob Stoklund Olesen
committed
if (InsP.second) {
if (simple) *simple = true;
Jakob Stoklund Olesen
committed
return InsP.first->second = li_->createValueCopy(ParentVNI,
lis_.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
}
// This was a simple mapped value.
Jakob Stoklund Olesen
committed
if (InsP.first->second) {
if (simple) *simple = true;
return InsP.first->second;
Jakob Stoklund Olesen
committed
}
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
Jakob Stoklund Olesen
committed
if (simple) *simple = false;
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
return VNI;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
// Perform a depth-first search for predecessor blocks where we know the
// dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
// Track MBBs where we have created or learned the dominating value.
// This may change during the DFS as we create new phi-defs.
typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
MBBValueMap DomValue;
for (idf_iterator<MachineBasicBlock*>
IDFI = idf_begin(IdxMBB),
IDFE = idf_end(IdxMBB); IDFI != IDFE;) {
MachineBasicBlock *MBB = *IDFI;
Jakob Stoklund Olesen
committed
SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
// We are operating on the restricted CFG where ParentVNI is live.
Jakob Stoklund Olesen
committed
if (parentli_.getVNInfoAt(End) != ParentVNI) {
IDFI.skipChildren();
continue;
}
// Do we have a dominating value in this block?
VNInfo *VNI = extendTo(MBB, End);
if (!VNI) {
++IDFI;
continue;
}
// Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs
// as needed along the way.
for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
Jakob Stoklund Olesen
committed
// Start from MBB's immediate successor. End at IdxMBB.
MachineBasicBlock *Succ = IDFI.getPath(PI-1);
std::pair<MBBValueMap::iterator, bool> InsP =
DomValue.insert(MBBValueMap::value_type(Succ, VNI));
Jakob Stoklund Olesen
committed
// This is the first time we backtrack to Succ.
if (InsP.second)
continue;
// We reached Succ again with the same VNI. Nothing is going to change.
VNInfo *OVNI = InsP.first->second;
if (OVNI == VNI)
break;
// Succ already has a phi-def. No need to continue.
SlotIndex Start = lis_.getMBBStartIdx(Succ);
Jakob Stoklund Olesen
committed
if (OVNI->def == Start)
Jakob Stoklund Olesen
committed
// We have a collision between the old and new VNI at Succ. That means
// neither dominates and we need a new phi-def.
Jakob Stoklund Olesen
committed
VNI = li_->getNextValue(Start, 0, true, lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
InsP.first->second = VNI;
Jakob Stoklund Olesen
committed
// Replace OVNI with VNI in the remaining path.
for (; PI > 1 ; --PI) {
MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
if (I == DomValue.end() || I->second != OVNI)
break;
I->second = VNI;
}
}
// No need to search the children, we found a dominating value.
}
// The search should at least find a dominating value for IdxMBB.
assert(!DomValue.empty() && "Couldn't find a reaching definition");
// Since we went through the trouble of a full DFS visiting all reaching defs,
// the values in DomValue are now accurate. No more phi-defs are needed for
// these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
VNInfo *IdxVNI = 0;
for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
++I) {
MachineBasicBlock *MBB = I->first;
VNInfo *VNI = I->second;
SlotIndex Start = lis_.getMBBStartIdx(MBB);
if (MBB == IdxMBB) {
// Don't add full liveness to IdxMBB, stop at Idx.
if (Start != Idx)
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
Jakob Stoklund Olesen
committed
// The caller had better add some liveness to IdxVNI, or it leaks.
IdxVNI = VNI;
} else
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
}
assert(IdxVNI && "Didn't find value for Idx");
return IdxVNI;
}
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
if (I == li_->begin())
return 0;
--I;
if (I->start < lis_.getMBBStartIdx(MBB))
return 0;
Jakob Stoklund Olesen
committed
if (I->end <= Idx)
I->end = Idx.getNextSlot();
return I->valno;
}
// addSimpleRange - Add a simple range from parentli_ to li_.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
Jakob Stoklund Olesen
committed
bool simple;
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
// A simple mapping is easy.
if (simple) {
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End);
if (MBB == MBBE) {
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
Start = lis_.getMBBStartIdx(MBB);
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
mapValue(ParentVNI, Start)));
}
// Final block.
Start = lis_.getMBBStartIdx(MBB);
if (Start != End)
Jakob Stoklund Olesen
committed
li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
Jakob Stoklund Olesen
committed
assert(li_ && "call reset first");
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
if (I != B) {
--I;
if (I->end > Start)
addSimpleRange(Start, std::min(End, I->end), I->valno);
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
const VNInfo *ParentVNI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
get(TargetOpcode::COPY);
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
VNInfo *VNI = defValue(ParentVNI, DefIdx);
VNI->setCopy(MI);
li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
return VNI;
}
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
SmallVectorImpl<LiveInterval*> &intervals)
Jakob Stoklund Olesen
committed
: sa_(sa), lis_(lis), vrm_(vrm),
mri_(vrm.getMachineFunction().getRegInfo()),
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
Jakob Stoklund Olesen
committed
curli_(sa_.getCurLI()),
Jakob Stoklund Olesen
committed
dupli_(lis_, *curli_),
openli_(lis_, *curli_),
intervals_(intervals),
firstInterval(intervals_.size())
Jakob Stoklund Olesen
committed
{
Jakob Stoklund Olesen
committed
assert(curli_ && "SplitEditor created from empty SplitAnalysis");
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Make sure curli_ is assigned a stack slot, so all our intervals get the
// same slot as curli_.
if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
vrm_.assignVirt2StackSlot(curli_->reg);
Jakob Stoklund Olesen
committed
}
LiveInterval *SplitEditor::createInterval() {
Jakob Stoklund Olesen
committed
unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg));
Jakob Stoklund Olesen
committed
LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
vrm_.grow();
Jakob Stoklund Olesen
committed
vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg));
Jakob Stoklund Olesen
committed
return &Intv;
}
Jakob Stoklund Olesen
committed
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
for (int i = firstInterval, e = intervals_.size(); i != e; ++i)
if (intervals_[i]->liveAt(Idx))
return true;
return false;
}
Jakob Stoklund Olesen
committed
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!openli_.getLI() && "Previous LI not closed before openIntv");
Jakob Stoklund Olesen
committed
if (!dupli_.getLI())
Jakob Stoklund Olesen
committed
dupli_.reset(createInterval());
Jakob Stoklund Olesen
committed
openli_.reset(createInterval());
intervals_.push_back(openli_.getLI());
Jakob Stoklund Olesen
committed
}
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex());
if (!ParentVNI) {
DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n");
return;
Jakob Stoklund Olesen
committed
truncatedValues.insert(ParentVNI);
Jakob Stoklund Olesen
committed
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI()
<< '\n');
/// enterIntvAtEnd - Enter openli at the end of MBB.
Jakob Stoklund Olesen
committed
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
Jakob Stoklund Olesen
committed
SlotIndex End = lis_.getMBBEndIdx(&MBB);
VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot());
if (!ParentVNI) {
DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n");
Jakob Stoklund Olesen
committed
return;
}
Jakob Stoklund Olesen
committed
truncatedValues.insert(ParentVNI);
Jakob Stoklund Olesen
committed
VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
MBB, MBB.getFirstTerminator());
// Make sure openli is live out of MBB.
openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
}
/// useIntv - indicate that all instructions in MBB should use openli.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
Jakob Stoklund Olesen
committed
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before useIntv");
Jakob Stoklund Olesen
committed
openli_.addRange(Start, End);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
<< *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
}
/// leaveIntvAfter - Leave openli after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
Jakob Stoklund Olesen
committed
// The interval must be live beyond the instruction at Idx.
SlotIndex EndIdx = Idx.getNextIndex().getBaseIndex();
VNInfo *ParentVNI = curli_->getVNInfoAt(EndIdx);
if (!ParentVNI) {
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n");
Jakob Stoklund Olesen
committed
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
assert(MI && "leaveIntvAfter called with invalid index");
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
Jakob Stoklund Olesen
committed
*MI->getParent(), MI);
Jakob Stoklund Olesen
committed
// Finally we must make sure that openli is properly extended from Idx to the
// new copy.
openli_.mapValue(ParentVNI, VNI->def.getUseIndex());
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI()
<< '\n');
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
Jakob Stoklund Olesen
committed
VNInfo *ParentVNI = curli_->getVNInfoAt(Start);
Jakob Stoklund Olesen
committed
// Is curli even live-in to MBB?
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n");
Jakob Stoklund Olesen
committed
// We are going to insert a back copy, so we must have a dupli_.
Jakob Stoklund Olesen
committed
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
MBB, MBB.begin());
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Finally we must make sure that openli is properly extended from Start to
// the new copy.
openli_.mapValue(ParentVNI, VNI->def.getUseIndex());
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI()
Jakob Stoklund Olesen
committed
<< '\n');
Jakob Stoklund Olesen
committed
}
/// closeIntv - Indicate that we are done editing the currently open
Jakob Stoklund Olesen
committed
/// LiveInterval, and ranges can be trimmed.
Jakob Stoklund Olesen
committed
assert(openli_.getLI() && "openIntv not called before closeIntv");
DEBUG(dbgs() << " closeIntv cleaning up\n");
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " open " << *openli_.getLI() << '\n');
Jakob Stoklund Olesen
committed
openli_.reset(0);
}
Jakob Stoklund Olesen
committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
void
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
SlotIndex sidx = Start;
// Break [Start;End) into segments that don't overlap any intervals.
for (;;) {
SlotIndex next = sidx, eidx = End;
// Find overlapping intervals.
for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx;
++i) {
LiveInterval::const_iterator I = intervals_[i]->find(sidx);
LiveInterval::const_iterator E = intervals_[i]->end();
if (I == E)
continue;
// Interval I is overlapping [sidx;eidx). Trim sidx.
if (I->start <= sidx) {
sidx = I->end;
if (++I == E)
continue;
}
// Trim eidx too if needed.
if (I->start >= eidx)
continue;
eidx = I->start;
if (I->end > next)
next = I->end;
}
// Now, [sidx;eidx) doesn't overlap anything in intervals_.
if (sidx < eidx)
dupli_.addSimpleRange(sidx, eidx, VNI);
// If the interval end was truncated, we can try again from next.
if (next <= sidx)
break;
sidx = next;
Jakob Stoklund Olesen
committed
}
/// rewrite - after all the new live ranges have been created, rewrite
/// instructions using curli to use the new intervals.
Jakob Stoklund Olesen
committed
bool SplitEditor::rewrite() {
assert(!openli_.getLI() && "Previous LI not closed before rewrite");
Jakob Stoklund Olesen
committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
// First we need to fill in the live ranges in dupli.
// If values were redefined, we need a full recoloring with SSA update.
// If values were truncated, we only need to truncate the ranges.
// If values were partially rematted, we should shrink to uses.
// If values were fully rematted, they should be omitted.
// FIXME: If a single value is redefined, just move the def and truncate.
// Values that are fully contained in the split intervals.
SmallPtrSet<const VNInfo*, 8> deadValues;
// Map all curli values that should have live defs in dupli.
for (LiveInterval::const_vni_iterator I = curli_->vni_begin(),
E = curli_->vni_end(); I != E; ++I) {
const VNInfo *VNI = *I;
// Original def is contained in the split intervals.
if (intervalsLiveAt(VNI->def)) {
// Did this value escape?
if (dupli_.isMapped(VNI))
truncatedValues.insert(VNI);
else
deadValues.insert(VNI);
continue;
}
// Add minimal live range at the definition.
VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
}
// Add all ranges to dupli.
for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end();
I != E; ++I) {
const LiveRange &LR = *I;
if (truncatedValues.count(LR.valno)) {
// recolor after removing intervals_.
addTruncSimpleRange(LR.start, LR.end, LR.valno);
} else if (!deadValues.count(LR.valno)) {
// recolor without truncation.
dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
}
}
const LiveInterval *curli = sa_.getCurLI();
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
RE = mri_.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
// FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
SlotIndex Idx = lis_.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
Jakob Stoklund Olesen
committed
LiveInterval *LI = dupli_.getLI();
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
LiveInterval *testli = intervals_[i];
if (testli->liveAt(Idx)) {
LI = testli;
break;
}
}
Jakob Stoklund Olesen
committed
sa_.removeUse(MI);
DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI);
}
}
// dupli_ goes in last, after rewriting.
Jakob Stoklund Olesen
committed
if (dupli_.getLI()) {
if (dupli_.getLI()->empty()) {
DEBUG(dbgs() << " dupli became empty?\n");
Jakob Stoklund Olesen
committed
lis_.removeInterval(dupli_.getLI()->reg);
dupli_.reset(0);
Jakob Stoklund Olesen
committed
dupli_.getLI()->RenumberValues(lis_);
intervals_.push_back(dupli_.getLI());
}
Jakob Stoklund Olesen
committed
// Calculate spill weight and allocation hints for new intervals.
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
LiveInterval &li = *intervals_[i];
vrai.CalculateRegClass(li.reg);
Jakob Stoklund Olesen
committed
vrai.CalculateWeightAndHint(li);
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
<< ":" << li << '\n');
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
return dupli_.getLI();
Jakob Stoklund Olesen
committed
}
//===----------------------------------------------------------------------===//
// Loop Splitting
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
Jakob Stoklund Olesen
committed
SplitAnalysis::LoopBlocks Blocks;
sa_.getLoopBlocks(Loop, Blocks);
// Break critical edges as needed.
SplitAnalysis::BlockPtrSet CriticalExits;
sa_.getCriticalExits(Blocks, CriticalExits);
assert(CriticalExits.empty() && "Cannot break critical exits yet");
// Create new live interval for the loop.
Jakob Stoklund Olesen
committed
// Insert copies in the predecessors.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
E = Blocks.Preds.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
Jakob Stoklund Olesen
committed
enterIntvAtEnd(MBB);
Jakob Stoklund Olesen
committed
}
// Switch all loop blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
E = Blocks.Loop.end(); I != E; ++I)
Jakob Stoklund Olesen
committed
// Insert back copies in the exit blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
E = Blocks.Exits.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
Jakob Stoklund Olesen
committed
}
// Done.
Jakob Stoklund Olesen
committed
return rewrite();
}
//===----------------------------------------------------------------------===//
// Single Block Splitting
//===----------------------------------------------------------------------===//
/// splitSingleBlocks - Split curli into a separate live interval inside each
/// basic block in Blocks. Return true if curli has been completely replaced,
/// false if curli is still intact, and needs to be spilled or split further.
bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
// Determine the first and last instruction using curli in each block.
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
IndexPairMap MBBRange;
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
E = sa_.usingInstrs_.end(); I != E; ++I) {
const MachineBasicBlock *MBB = (*I)->getParent();
if (!Blocks.count(MBB))
continue;
SlotIndex Idx = lis_.getInstructionIndex(*I);
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
IndexPair &IP = MBBRange[MBB];
if (!IP.first.isValid() || Idx < IP.first)
IP.first = Idx;
if (!IP.second.isValid() || Idx > IP.second)
IP.second = Idx;
}
// Create a new interval for each block.
for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
E = Blocks.end(); I != E; ++I) {
IndexPair &IP = MBBRange[*I];
DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
<< IP.first << ';' << IP.second << ")\n");
assert(IP.first.isValid() && IP.second.isValid());
openIntv();
enterIntvBefore(IP.first);
useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
leaveIntvAfter(IP.second);
closeIntv();
}
Jakob Stoklund Olesen
committed
return rewrite();
//===----------------------------------------------------------------------===//
// Sub Block Splitting
//===----------------------------------------------------------------------===//
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
/// and it wou pay to subdivide the interval inside that block, return it.
/// Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
// The interval must be exclusive to one block.
if (usingBlocks_.size() != 1)
return 0;
// Don't to this for less than 4 instructions. We want to be sure that
// splitting actually reduces the instruction count per interval.