"llvm/git@repo.hca.bsc.es:lalbano/llvm-bpevl.git" did not exist on "72b324de4df18942cdfab61b15e54fbced81b731"
Newer
Older
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
Chris Lattner
committed
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
Chris Lattner
committed
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
Chris Lattner
committed
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner
committed
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
/// This pass performs 'jump threading', which looks at blocks that have
/// multiple predecessors and multiple successors. If one or more of the
/// predecessors of the block can be proven to always jump to one of the
/// successors, we forward the edge from the predecessor to the successor by
/// duplicating the contents of this block.
///
/// An example of when this can occur is code like this:
///
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
///
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
TargetData *TD;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
#else
SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
#endif
public:
static char ID; // Pass identification
JumpThreading() : FunctionPass(&ID) {}
bool runOnFunction(Function &F);
void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB);
bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB);
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessJumpOnPHI(PHINode *PN);
bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
char JumpThreading::ID = 0;
static RegisterPass<JumpThreading>
X("jump-threading", "Jump Threading");
// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
TD = getAnalysisIfAvailable<TargetData>();
FindLoopHeaders(F);
bool AnotherIteration = true, EverChanged = false;
while (AnotherIteration) {
AnotherIteration = false;
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
BasicBlock *BB = I;
while (ProcessBlock(BB))
Changed = true;
++I;
// If the block is trivially dead, zap it. This eliminates the successor
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
<< "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
Changed = true;
}
}
AnotherIteration = Changed;
EverChanged |= Changed;
}
LoopHeaders.clear();
return EverChanged;
Chris Lattner
committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
// If this is a pointer->pointer bitcast, it is free.
if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
continue;
// All other instructions count for at least one unit.
++Size;
// Calls are more expensive. If they are non-intrinsic calls, we model them
// as having cost of 4. If they are a non-vector intrinsic, we model them
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!isa<VectorType>(CI->getType()))
Size += 1;
}
}
// Threading through a switch statement is particularly profitable. If this
// block ends in a switch, decrease its cost to make it more likely to happen.
if (isa<SwitchInst>(I))
Size = Size > 6 ? Size-6 : 0;
return Size;
}
/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops. Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations. To prevent this from
/// happening, we first have to find the loop headers. Here we approximate this
/// by finding targets of backedges in the CFG.
///
/// Note that there definitely are cases when we want to allow threading of
/// edges across a loop header. For example, threading a jump from outside the
/// loop (the preheader) to an exit block of the loop is definitely profitable.
/// It is also almost always profitable to thread backedges from within the loop
/// to exit blocks, and is often profitable to thread backedges to other blocks
/// within the loop (forming a nested loop). This simple analysis is not rich
/// enough to track all of these properties and keep it up-to-date as the CFG
/// mutates, so we don't allow any of these transformations.
///
void JumpThreading::FindLoopHeaders(Function &F) {
SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
FindFunctionBackedges(F, Edges);
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
}
/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
/// value for the PHI, factor them together so we get one block to thread for
/// the whole group.
/// This is important for things like "phi i1 [true, true, false, true, x]"
/// where we only need to clone the block for the true blocks once.
BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
SmallVector<BasicBlock*, 16> CommonPreds;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Val)
CommonPreds.push_back(PN->getIncomingBlock(i));
if (CommonPreds.size() == 1)
return CommonPreds[0];
DEBUG(errs() << " Factoring out " << CommonPreds.size()
<< " common predecessors.\n");
return SplitBlockPredecessors(PN->getParent(),
&CommonPreds[0], CommonPreds.size(),
".thr_comm", this);
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
///
/// Since we can pick an arbitrary destination, we pick the successor with the
/// fewest predecessors. This should reduce the in-degree of the others.
///
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
TerminatorInst *BBTerm = BB->getTerminator();
unsigned MinSucc = 0;
BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
// Compute the successor with the minimum number of predecessors.
unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
TestBB = BBTerm->getSuccessor(i);
unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
if (NumPreds < MinNumPreds)
MinSucc = i;
}
return MinSucc;
}
/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner
committed
/// through to a successor, transform them now.
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// If this block has a single predecessor, and if that pred has a single
// successor, merge the blocks. This encourages recursive jump threading
// because now the condition in this block can be threaded through
// predecessors of our predecessor block.
if (BasicBlock *SinglePred = BB->getSinglePredecessor())
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
SinglePred != BB) {
// If SinglePred was a loop header, BB becomes one.
if (LoopHeaders.erase(SinglePred))
LoopHeaders.insert(BB);
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(BB);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
return true;
}
// See if this block ends with a branch or switch. If so, see if the
// condition is a phi node. If so, and if an entry of the phi node is a
// constant, we can thread the block.
Chris Lattner
committed
Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump.
if (BI->isUnconditional()) return false;
Chris Lattner
committed
Condition = BI->getCondition();
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner
committed
Condition = SI->getCondition();
else
return false; // Must be an invoke.
// If the terminator of this block is branching on a constant, simplify the
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding terminator: " << *BB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(BB);
return true;
}
// If the terminator is branching on an undef, we can pick any of the
// successors to branch to. Let GetBestDestForJumpOnUndef decide.
if (isa<UndefValue>(Condition)) {
unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
// Fold the branch/switch.
TerminatorInst *BBTerm = BB->getTerminator();
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
if (i == BestSucc) continue;
BBTerm->getSuccessor(i)->removePredecessor(BB);
}
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding undef terminator: " << *BBTerm << '\n');
BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
BBTerm->eraseFromParent();
return true;
}
Instruction *CondInst = dyn_cast<Instruction>(Condition);
// If the condition is an instruction defined in another block, see if a
// predecessor has the same condition:
// br COND, BBX, BBY
// BBX:
// br COND, BBZ, BBW
if (!Condition->hasOneUse() && // Multiple uses.
(CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
if (isa<BranchInst>(BB->getTerminator())) {
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && PBI->getCondition() == Condition &&
ProcessBranchOnDuplicateCond(*PI, BB))
return true;
} else {
assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
for (; PI != E; ++PI)
if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
if (PSI->getCondition() == Condition &&
ProcessSwitchOnDuplicateCond(*PI, BB))
return true;
}
}
// All the rest of our checks depend on the condition being an instruction.
if (CondInst == 0)
return false;
Chris Lattner
committed
// See if this is a phi node in the current block.
if (PHINode *PN = dyn_cast<PHINode>(CondInst))
if (PN->getParent() == BB)
return ProcessJumpOnPHI(PN);
Chris Lattner
committed
// If this is a conditional branch whose condition is and/or of a phi, try to
// simplify it.
if ((CondInst->getOpcode() == Instruction::And ||
CondInst->getOpcode() == Instruction::Or) &&
isa<BranchInst>(BB->getTerminator()) &&
ProcessBranchOnLogical(CondInst, BB,
CondInst->getOpcode() == Instruction::And))
return true;
Nick Lewycky
committed
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
if (isa<PHINode>(CondCmp->getOperand(0))) {
// If we have "br (phi != 42)" and the phi node has any constant values
// as operands, we can thread through this block.
//
// If we have "br (cmp phi, x)" and the phi node contains x such that the
// comparison uniquely identifies the branch target, we can thread
// through this block.
if (ProcessBranchOnCompare(CondCmp, BB))
return true;
}
// If we have a comparison, loop over the predecessors to see if there is
// a condition with the same value.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && *PI != BB) {
if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
if (CI->getOperand(0) == CondCmp->getOperand(0) &&
CI->getOperand(1) == CondCmp->getOperand(1) &&
CI->getPredicate() == CondCmp->getPredicate()) {
// TODO: Could handle things like (x != 4) --> (x == 17)
if (ProcessBranchOnDuplicateCond(*PI, BB))
return true;
}
}
Nick Lewycky
committed
}
// Check for some cases that are worth simplifying. Right now we want to look
// for loads that are used by a switch or by the condition for the branch. If
// we see one, check to see if it's partially redundant. If so, insert a PHI
// which can then be used to thread the values.
//
// This is particularly important because reg2mem inserts loads and stores all
// over the place, and this blocks jump threading if we don't zap them.
Value *SimplifyValue = CondInst;
if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
if (isa<Constant>(CondCmp->getOperand(1)))
SimplifyValue = CondCmp->getOperand(0);
if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
if (SimplifyPartiallyRedundantLoad(LI))
return true;
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
// "(X == 4)" thread through this block.
/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
/// block that jump on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// br COND, DESTBB, BBY
/// DESTBB:
/// br COND, BBZ, BBW
///
/// If DESTBB has multiple predecessors, we can't just constant fold the branch
/// in DESTBB, we have to thread over it.
bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *BB) {
BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
// If both successors of PredBB go to DESTBB, we don't know anything. We can
// fold the branch to an unconditional one, which allows other recursive
// simplifications.
bool BranchDir;
if (PredBI->getSuccessor(1) != BB)
BranchDir = true;
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
DEBUG(errs() << " In block '" << PredBB->getName()
<< "' folding terminator: " << *PredBB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(PredBB);
return true;
}
BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding condition to '" << BranchDir << "': "
<< *BB->getTerminator() << '\n');
Value *OldCond = DestBI->getCondition();
DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
BranchDir));
ConstantFoldTerminator(BB);
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
/// block that switch on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// switch COND [... DESTBB, BBY ... ]
/// DESTBB:
/// switch COND [... BBZ, BBW ]
///
/// Optimizing switches like this is very important, because simplifycfg builds
/// switches out of repeated 'if' conditions.
bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *DestBB) {
// Can't thread edge to self.
if (PredBB == DestBB)
return false;
SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
// There are a variety of optimizations that we can potentially do on these
// blocks: we order them from most to least preferable.
// If DESTBB *just* contains the switch, then we can forward edges from PREDBB
// directly to their destination. This does not introduce *any* code size
// growth. Skip debug info first.
BasicBlock::iterator BBI = DestBB->begin();
while (isa<DbgInfoIntrinsic>(BBI))
BBI++;
// FIXME: Thread if it just contains a PHI.
if (isa<SwitchInst>(BBI)) {
bool MadeChange = false;
// Ignore the default edge for now.
for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
ConstantInt *DestVal = DestSI->getCaseValue(i);
BasicBlock *DestSucc = DestSI->getSuccessor(i);
// Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
// PredSI has an explicit case for it. If so, forward. If it is covered
// by the default case, we can't update PredSI.
unsigned PredCase = PredSI->findCaseValue(DestVal);
if (PredCase == 0) continue;
// If PredSI doesn't go to DestBB on this value, then it won't reach the
// case on this condition.
if (PredSI->getSuccessor(PredCase) != DestBB &&
DestSI->getSuccessor(i) != DestBB)
continue;
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
DEBUG(errs() << "THROUGH: " << *DestSI);
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
SplitCriticalEdge(DestSI, i, this);
DestSucc = DestSI->getSuccessor(i);
}
FoldSingleEntryPHINodes(DestSucc);
PredSI->setSuccessor(PredCase, DestSucc);
MadeChange = true;
}
if (MadeChange)
return true;
}
return false;
}
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
/// load instruction, eliminate it by replacing it with a PHI node. This is an
/// important optimization that encourages jump threading, and needs to be run
/// interlaced with other jump threading tasks.
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// Don't hack volatile loads.
if (LI->isVolatile()) return false;
// If the load is defined in a block with exactly one predecessor, it can't be
// partially redundant.
BasicBlock *LoadBB = LI->getParent();
if (LoadBB->getSinglePredecessor())
return false;
Value *LoadedPtr = LI->getOperand(0);
// If the loaded operand is defined in the LoadBB, it can't be available.
// FIXME: Could do PHI translation, that would be fun :)
if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
if (PtrOp->getParent() == LoadBB)
return false;
// Scan a few instructions up from the load, to see if it is obviously live at
// the entry to its block.
BasicBlock::iterator BBIt = LI;
if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
BBIt, 6)) {
// If the value if the load is locally available within the block, just use
// it. This frequently occurs for reg2mem'd allocas.
//cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
}
// Otherwise, if we scanned the whole block and got to the top of the block,
// we know the block is locally transparent to the load. If not, something
// might clobber its value.
if (BBIt != LoadBB->begin())
return false;
SmallPtrSet<BasicBlock*, 8> PredsScanned;
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
AvailablePredsTy AvailablePreds;
BasicBlock *OneUnavailablePred = 0;
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *PredBB = *PI;
// If we already scanned this predecessor, skip it.
if (!PredsScanned.insert(PredBB))
continue;
// Scan the predecessor to see if the value is available in the pred.
BBIt = PredBB->end();
Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
if (!PredAvailable) {
OneUnavailablePred = PredBB;
continue;
}
// If so, this load is partially redundant. Remember this info so that we
// can create a PHI node.
AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
}
// If the loaded value isn't available in any predecessor, it isn't partially
// redundant.
if (AvailablePreds.empty()) return false;
// Okay, the loaded value is available in at least one (and maybe all!)
// predecessors. If the value is unavailable in more than one unique
// predecessor, we want to insert a merge block for those common predecessors.
// This ensures that we only have to insert one reload, thus not increasing
// code size.
BasicBlock *UnavailablePred = 0;
// If there is exactly one predecessor where the value is unavailable, the
// already computed 'OneUnavailablePred' block is it. If it ends in an
// unconditional branch, we know that it isn't a critical edge.
if (PredsScanned.size() == AvailablePreds.size()+1 &&
OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
UnavailablePred = OneUnavailablePred;
} else if (PredsScanned.size() != AvailablePreds.size()) {
// Otherwise, we had multiple unavailable predecessors or we had a critical
// edge from the one.
SmallVector<BasicBlock*, 8> PredsToSplit;
SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
AvailablePredSet.insert(AvailablePreds[i].first);
// Add all the unavailable predecessors to the PredsToSplit list.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI)
if (!AvailablePredSet.count(*PI))
PredsToSplit.push_back(*PI);
// Split them out to their own block.
UnavailablePred =
SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
"thread-split", this);
}
// If the value isn't available in all predecessors, then there will be
// exactly one where it isn't available. Insert a load on that edge and add
// it to the AvailablePreds list.
if (UnavailablePred) {
assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
"Can't handle critical edge here!");
Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
UnavailablePred->getTerminator());
AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
}
// Now we know that each predecessor of this block has a value in
// AvailablePreds, sort them for efficient access as we're walking the preds.
array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// Create a PHI node at the start of the block for the PRE'd load value.
PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
PN->takeName(LI);
// Insert new entries into the PHI for each predecessor. A single block may
// have multiple entries here.
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
++PI) {
AvailablePredsTy::iterator I =
std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
std::make_pair(*PI, (Value*)0));
assert(I != AvailablePreds.end() && I->first == *PI &&
"Didn't find entry for predecessor!");
PN->addIncoming(I->second, I->first);
}
//cerr << "PRE: " << *LI << *PN << "\n";
LI->replaceAllUsesWith(PN);
LI->eraseFromParent();
return true;
}
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
/// inputs to the phi node.
///
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
BasicBlock *BB = PN->getParent();
// See if the phi node has any constant integer or undef values. If so, we
// can determine where the corresponding predecessor will branch.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *PredVal = PN->getIncomingValue(i);
// Check to see if this input is a constant integer. If so, the direction
// of the branch is predictable.
if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
// Merge any common predecessors that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
BasicBlock *SuccBB;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
SuccBB = BI->getSuccessor(CI->isZero());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
}
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
// If the input is an undef, then it doesn't matter which way it will go.
// Pick an arbitrary dest and thread the edge.
if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
// Merge any common predecessors that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
BasicBlock *SuccBB =
BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
// If the incoming values are all variables, we don't know the destination of
// any predecessors. However, if any of the predecessor blocks end in an
// unconditional branch, we can *duplicate* the jump into that block in order
// to further encourage jump threading and to eliminate cases where we have
// branch on a phi of an icmp (branch on icmp is much better).
// We don't want to do this tranformation for switches, because we don't
// really want to duplicate a switch.
if (isa<SwitchInst>(BB->getTerminator()))
return false;
// Look for unconditional branch predecessors.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = PN->getIncomingBlock(i);
if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
if (PredBr->isUnconditional() &&
// Try to duplicate BB into PredBB.
DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
return true;
}
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
/// whose condition is an AND/OR where one side is PN. If PN has constant
/// operands that permit us to evaluate the condition for some operand, thread
/// through the block. For example with:
/// br (and X, phi(Y, Z, false))
/// the predecessor corresponding to the 'false' will always jump to the false
/// destination of the branch.
///
bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
bool isAnd) {
// If this is a binary operator tree of the same AND/OR opcode, check the
// LHS/RHS.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
if ((isAnd && BO->getOpcode() == Instruction::And) ||
(!isAnd && BO->getOpcode() == Instruction::Or)) {
if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
return true;
if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
return true;
}
// If this isn't a PHI node, we can't handle it.
PHINode *PN = dyn_cast<PHINode>(V);
if (!PN || PN->getParent() != BB) return false;
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
!isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
break;
}
}
// If no match, bail out.
if (PredNo == ~0U)
return false;
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
// Next, figure out which successor we are threading to. If this was an AND,
// the constant must be FALSE, and we must be targeting the 'false' block.
// If this is an OR, the constant must be TRUE, and we must be targeting the
// 'true' block.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
/// hand sides of the compare instruction, try to determine the result. If the
/// result can not be determined, a null pointer is returned.
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
Value *LHS, Value *RHS,
LLVMContext &Context) {
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return ConstantExpr::getCompare(pred, CLHS, CRHS);
if (LHS == RHS)
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
return ICmpInst::isTrueWhenEqual(pred) ?
ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
return 0;
}
/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
/// node and a value. If we can identify when the comparison is true between
/// the phi inputs and the value, we can fold the compare for that edge and
/// thread through it.
bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
Value *RHS = Cmp->getOperand(1);
// If the phi isn't in the current block, an incoming edge to this block
// doesn't control the destination.
if (PN->getParent() != BB)
return false;
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
Value *PredVal = 0;
bool TrueDirection = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
PredVal = PN->getIncomingValue(i);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
}
// If this folded to a constant expr, we can't do anything.
if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
TrueDirection = ResC->getZExtValue();
break;
}
// If this folded to undef, just go the false way.
if (isa<UndefValue>(Res)) {
TrueDirection = false;
break;
}
// Otherwise, we can't fold this input.
PredVal = 0;
}
// If no match, bail out.
if (PredVal == 0)
return false;
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
// Next, get our successor.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped).
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
BasicBlock *OldPred,
BasicBlock *NewPred,
DenseMap<Instruction*, Value*> &ValueMap) {
for (BasicBlock::iterator PNI = PHIBB->begin();
PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
// Ok, we have a PHI node. Figure out what the incoming value was for the
// DestBlock.
Value *IV = PN->getIncomingValueForBlock(OldPred);
// Remap the value if necessary.
if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
if (I != ValueMap.end())
IV = I->second;
PN->addIncoming(IV, NewPred);
}
/// ThreadEdge - We have decided that it is safe and profitable to thread an
/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
/// change.
bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DEBUG(errs() << " Not threading across BB '" << BB->getName()
<< "' - would thread to self!\n");
return false;
}
// If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
DEBUG(errs() << " Not threading from '" << PredBB->getName()
<< "' across loop header BB '" << BB->getName()
<< "' to dest BB '" << SuccBB->getName()
<< "' - it might create an irreducible loop!\n");
return false;
}
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DEBUG(errs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
return false;
}
// And finally, do it!
DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
<< SuccBB->getName() << "' with cost: " << JumpThreadCost
<< ", across block:\n "
<< *BB << "\n");
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
DenseMap<Instruction*, Value*> ValueMapping;
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
BB->getName()+".thread",
BB->getParent(), BB);
NewBB->moveAfter(PredBB);
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
}
// We didn't copy the terminator from BB over to NewBB, because there is now
// an unconditional jump to SuccBB. Insert the unconditional jump.
BranchInst::Create(SuccBB, NewBB);
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
// PHI nodes for NewBB now.
AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattner
committed
// If there were values defined in BB that are used outside the block, then we
// now have to update all uses of the value to use either the original value,
// the cloned value, or some PHI derived value. This can require arbitrary
// PHI insertion, of which we are prepared to do, clean these up now.
SSAUpdater SSAUpdate;
SmallVector<Use*, 16> UsesToRename;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {