"clang/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "3480ef24d1c85e7a44a12c29c73723307af0233c"
Newer
Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
Alkis Evlogimenos
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Alkis Evlogimenos
committed
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
Dan Gohman
committed
#include "llvm/Analysis/AliasAnalysis.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/Passes.h"
Dan Gohman
committed
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
Evan Cheng
committed
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
Lang Hames
committed
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
// Hidden options for help debugging.
static cl::opt<bool> DisableReMat("disable-rematerialization",
cl::init(false), cl::Hidden);
static cl::opt<bool> SplitAtBB("split-intervals-at-bb",
cl::init(true), cl::Hidden);
static cl::opt<int> SplitLimit("split-limit",
cl::init(-1), cl::Hidden);
Evan Cheng
committed
static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden);
static cl::opt<bool> EnableFastSpilling("fast-spill",
cl::init(false), cl::Hidden);
STATISTIC(numIntervals, "Number of original intervals");
STATISTIC(numFolds , "Number of loads/stores folded into instructions");
STATISTIC(numSplits , "Number of intervals split");
static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
Alkis Evlogimenos
committed
Chris Lattner
committed
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Dan Gohman
committed
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
if (!StrongPHIElim) {
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
}
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
Alkis Evlogimenos
committed
}
Chris Lattner
committed
void LiveIntervals::releaseMemory() {
Owen Anderson
committed
// Free the live intervals themselves.
for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
Owen Anderson
committed
E = r2iMap_.end(); I != E; ++I)
delete I->second;
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
terminatorGaps.clear();
// Release VNInfo memroy regions after all VNInfo objects are dtor'd.
VNInfoAllocator.Reset();
while (!ClonedMIs.empty()) {
MachineInstr *MI = ClonedMIs.back();
ClonedMIs.pop_back();
mf_->DeleteMachineInstr(MI);
}
}
static bool CanTurnIntoImplicitDef(MachineInstr *MI, unsigned Reg,
const TargetInstrInfo *tii_) {
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
Reg == SrcReg)
return true;
if ((MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
MI->getOperand(2).getReg() == Reg)
return true;
if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
MI->getOperand(1).getReg() == Reg)
return true;
return false;
}
Evan Cheng
committed
/// processImplicitDefs - Process IMPLICIT_DEF instructions and make sure
/// there is one implicit_def for each use. Add isUndef marker to
/// implicit_def defs and their uses.
void LiveIntervals::processImplicitDefs() {
SmallSet<unsigned, 8> ImpDefRegs;
SmallVector<MachineInstr*, 8> ImpDefMIs;
MachineBasicBlock *Entry = mf_->begin();
SmallPtrSet<MachineBasicBlock*,16> Visited;
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
DFI != E; ++DFI) {
MachineBasicBlock *MBB = *DFI;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ) {
MachineInstr *MI = &*I;
++I;
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
unsigned Reg = MI->getOperand(0).getReg();
ImpDefRegs.insert(Reg);
ImpDefMIs.push_back(MI);
continue;
}
bool ChangedToImpDef = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
Evan Cheng
committed
MachineOperand& MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Evan Cheng
committed
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (!ImpDefRegs.count(Reg))
continue;
// Use is a copy, just turn it into an implicit_def.
if (CanTurnIntoImplicitDef(MI, Reg, tii_)) {
bool isKill = MO.isKill();
MI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
MI->RemoveOperand(j);
if (isKill)
ImpDefRegs.erase(Reg);
ChangedToImpDef = true;
break;
}
Evan Cheng
committed
MO.setIsUndef();
if (MO.isKill() || MI->isRegTiedToDefOperand(i)) {
// Make sure other uses of
for (unsigned j = i+1; j != e; ++j) {
MachineOperand &MOJ = MI->getOperand(j);
if (MOJ.isReg() && MOJ.isUse() && MOJ.getReg() == Reg)
MOJ.setIsUndef();
}
Evan Cheng
committed
ImpDefRegs.erase(Reg);
}
Evan Cheng
committed
}
if (ChangedToImpDef) {
// Backtrack to process this new implicit_def.
--I;
} else {
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
ImpDefRegs.erase(MO.getReg());
}
Evan Cheng
committed
}
}
// Any outstanding liveout implicit_def's?
for (unsigned i = 0, e = ImpDefMIs.size(); i != e; ++i) {
MachineInstr *MI = ImpDefMIs[i];
unsigned Reg = MI->getOperand(0).getReg();
Evan Cheng
committed
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!ImpDefRegs.count(Reg)) {
// Delete all "local" implicit_def's. That include those which define
// physical registers since they cannot be liveout.
MI->eraseFromParent();
Evan Cheng
committed
continue;
Evan Cheng
committed
}
// If there are multiple defs of the same register and at least one
// is not an implicit_def, do not insert implicit_def's before the
// uses.
bool Skip = false;
for (MachineRegisterInfo::def_iterator DI = mri_->def_begin(Reg),
DE = mri_->def_end(); DI != DE; ++DI) {
if (DI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
Skip = true;
break;
Evan Cheng
committed
}
}
if (Skip)
continue;
Evan Cheng
committed
// The only implicit_def which we want to keep are those that are live
// out of its block.
MI->eraseFromParent();
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
UE = mri_->use_end(); UI != UE; ) {
MachineOperand &RMO = UI.getOperand();
MachineInstr *RMI = &*UI;
++UI;
Evan Cheng
committed
MachineBasicBlock *RMBB = RMI->getParent();
if (RMBB == MBB)
Evan Cheng
committed
continue;
Evan Cheng
committed
// Turn a copy use into an implicit_def.
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (tii_->isMoveInstr(*RMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
Reg == SrcReg) {
RMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
for (int j = RMI->getNumOperands() - 1, ee = 0; j > ee; --j)
RMI->RemoveOperand(j);
continue;
}
Evan Cheng
committed
const TargetRegisterClass* RC = mri_->getRegClass(Reg);
unsigned NewVReg = mri_->createVirtualRegister(RC);
RMO.setReg(NewVReg);
RMO.setIsUndef();
RMO.setIsKill();
}
}
ImpDefRegs.clear();
ImpDefMIs.clear();
}
}
Owen Anderson
committed
void LiveIntervals::computeNumbering() {
Index2MiMap OldI2MI = i2miMap_;
Owen Anderson
committed
std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
Owen Anderson
committed
Idx2MBBMap.clear();
MBB2IdxMap.clear();
mi2iMap_.clear();
i2miMap_.clear();
terminatorGaps.clear();
Owen Anderson
committed
FunctionSize = 0;
// Number MachineInstrs and MachineBasicBlocks.
// Initialize MBB indexes to a sentinal.
MBB2IdxMap.resize(mf_->getNumBlockIDs(),
std::make_pair(MachineInstrIndex(),MachineInstrIndex()));
MachineInstrIndex MIIndex;
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
MBB != E; ++MBB) {
MachineInstrIndex StartIdx = MIIndex;
Evan Cheng
committed
Owen Anderson
committed
// Insert an empty slot at the beginning of each block.
MIIndex = MIIndex.nextIndex();
Owen Anderson
committed
i2miMap_.push_back(0);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
if (I == MBB->getFirstTerminator()) {
// Leave a gap for before terminators, this is where we will point
// PHI kills.
MachineInstrIndex tGap(true, MIIndex);
bool inserted =
terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
assert(inserted &&
"Multiple 'first' terminators encountered during numbering.");
inserted = inserted; // Avoid compiler warning if assertions turned off.
i2miMap_.push_back(0);
MIIndex = MIIndex.nextIndex();
}
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(I);
MIIndex = MIIndex.nextIndex();
FunctionSize++;
Owen Anderson
committed
// Insert max(1, numdefs) empty slots after every instruction.
unsigned Slots = I->getDesc().getNumDefs();
if (Slots == 0)
Slots = 1;
while (Slots--) {
MIIndex = MIIndex.nextIndex();
i2miMap_.push_back(0);
}
if (MBB->getFirstTerminator() == MBB->end()) {
// Leave a gap for before terminators, this is where we will point
// PHI kills.
MachineInstrIndex tGap(true, MIIndex);
bool inserted =
terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
assert(inserted &&
"Multiple 'first' terminators encountered during numbering.");
inserted = inserted; // Avoid compiler warning if assertions turned off.
i2miMap_.push_back(0);
MIIndex = MIIndex.nextIndex();
Owen Anderson
committed
Owen Anderson
committed
// Set the MBB2IdxMap entry for this MBB.
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex.prevSlot());
Owen Anderson
committed
Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
}
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
Owen Anderson
committed
if (!OldI2MI.empty())
for (iterator OI = begin(), OE = end(); OI != OE; ++OI) {
Owen Anderson
committed
for (LiveInterval::iterator LI = OI->second->begin(),
LE = OI->second->end(); LI != LE; ++LI) {
Owen Anderson
committed
// Remap the start index of the live range to the corresponding new
// number, or our best guess at what it _should_ correspond to if the
// original instruction has been erased. This is either the following
// instruction or its predecessor.
unsigned index = LI->start.getVecIndex();
MachineInstrIndex::Slot offset = LI->start.getSlot();
if (LI->start.isLoad()) {
Owen Anderson
committed
std::vector<IdxMBBPair>::const_iterator I =
Owen Anderson
committed
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start);
Owen Anderson
committed
// Take the pair containing the index
std::vector<IdxMBBPair>::const_iterator J =
(I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
Owen Anderson
committed
Owen Anderson
committed
LI->start = getMBBStartIdx(J->second);
} else {
LI->start = MachineInstrIndex(
MachineInstrIndex(mi2iMap_[OldI2MI[index]]),
(MachineInstrIndex::Slot)offset);
Owen Anderson
committed
}
Owen Anderson
committed
Owen Anderson
committed
// Remap the ending index in the same way that we remapped the start,
// except for the final step where we always map to the immediately
// following instruction.
index = (LI->end.prevSlot()).getVecIndex();
offset = LI->end.getSlot();
if (LI->end.isLoad()) {
// VReg dies at end of block.
Owen Anderson
committed
std::vector<IdxMBBPair>::const_iterator I =
Owen Anderson
committed
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end);
Owen Anderson
committed
LI->end = getMBBEndIdx(I->second).nextSlot();
Owen Anderson
committed
} else {
Owen Anderson
committed
unsigned idx = index;
while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
if (index != OldI2MI.size())
LI->end =
MachineInstrIndex(mi2iMap_[OldI2MI[index]],
(idx == index ? offset : MachineInstrIndex::LOAD));
else
LI->end =
MachineInstrIndex(MachineInstrIndex::NUM * i2miMap_.size());
Owen Anderson
committed
}
Owen Anderson
committed
for (LiveInterval::vni_iterator VNI = OI->second->vni_begin(),
VNE = OI->second->vni_end(); VNI != VNE; ++VNI) {
Owen Anderson
committed
// Remap the VNInfo def index, which works the same as the
// start indices above. VN's with special sentinel defs
// don't need to be remapped.
unsigned index = vni->def.getVecIndex();
MachineInstrIndex::Slot offset = vni->def.getSlot();
if (vni->def.isLoad()) {
Owen Anderson
committed
std::vector<IdxMBBPair>::const_iterator I =
Owen Anderson
committed
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def);
Owen Anderson
committed
// Take the pair containing the index
std::vector<IdxMBBPair>::const_iterator J =
(I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
Owen Anderson
committed
Owen Anderson
committed
vni->def = getMBBStartIdx(J->second);
} else {
vni->def = MachineInstrIndex(mi2iMap_[OldI2MI[index]], offset);
Owen Anderson
committed
}
Owen Anderson
committed
}
Owen Anderson
committed
// Remap the VNInfo kill indices, which works the same as
// the end indices above.
Owen Anderson
committed
for (size_t i = 0; i < vni->kills.size(); ++i) {
unsigned index = vni->kills[i].prevSlot().getVecIndex();
MachineInstrIndex::Slot offset = vni->kills[i].getSlot();
if (vni->kills[i].isLoad()) {
assert("Value killed at a load slot.");
/*std::vector<IdxMBBPair>::const_iterator I =
Owen Anderson
committed
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
Owen Anderson
committed
vni->kills[i] = getMBBEndIdx(I->second);*/
Owen Anderson
committed
} else {
if (vni->kills[i].isPHIIndex()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
vni->kills[i] = terminatorGaps[I->second];
} else {
assert(OldI2MI[index] != 0 &&
"Kill refers to instruction not present in index maps.");
vni->kills[i] = MachineInstrIndex(mi2iMap_[OldI2MI[index]], offset);
}
/*
Owen Anderson
committed
unsigned idx = index;
while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
if (index != OldI2MI.size())
vni->kills[i] = mi2iMap_[OldI2MI[index]] +
(idx == index ? offset : 0);
else
vni->kills[i] = InstrSlots::NUM * i2miMap_.size();
Owen Anderson
committed
}
Owen Anderson
committed
}
Owen Anderson
committed
}
Owen Anderson
committed
}
Lang Hames
committed
void LiveIntervals::scaleNumbering(int factor) {
// Need to
// * scale MBB begin and end points
// * scale all ranges.
// * Update VNI structures.
// * Scale instruction numberings
// Scale the MBB indices.
Idx2MBBMap.clear();
for (MachineFunction::iterator MBB = mf_->begin(), MBBE = mf_->end();
MBB != MBBE; ++MBB) {
std::pair<MachineInstrIndex, MachineInstrIndex> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
mbbIndices.first = mbbIndices.first.scale(factor);
mbbIndices.second = mbbIndices.second.scale(factor);
Lang Hames
committed
Idx2MBBMap.push_back(std::make_pair(mbbIndices.first, MBB));
}
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
// Scale terminator gaps.
for (DenseMap<MachineBasicBlock*, MachineInstrIndex>::iterator
TGI = terminatorGaps.begin(), TGE = terminatorGaps.end();
TGI != TGE; ++TGI) {
terminatorGaps[TGI->first] = TGI->second.scale(factor);
}
Lang Hames
committed
// Scale the intervals.
for (iterator LI = begin(), LE = end(); LI != LE; ++LI) {
LI->second->scaleNumbering(factor);
}
// Scale MachineInstrs.
Mi2IndexMap oldmi2iMap = mi2iMap_;
MachineInstrIndex highestSlot;
Lang Hames
committed
for (Mi2IndexMap::iterator MI = oldmi2iMap.begin(), ME = oldmi2iMap.end();
MI != ME; ++MI) {
MachineInstrIndex newSlot = MI->second.scale(factor);
Lang Hames
committed
mi2iMap_[MI->first] = newSlot;
highestSlot = std::max(highestSlot, newSlot);
}
unsigned highestVIndex = highestSlot.getVecIndex();
Lang Hames
committed
i2miMap_.clear();
i2miMap_.resize(highestVIndex + 1);
Lang Hames
committed
for (Mi2IndexMap::iterator MI = mi2iMap_.begin(), ME = mi2iMap_.end();
MI != ME; ++MI) {
i2miMap_[MI->second.getVecIndex()] = const_cast<MachineInstr *>(MI->first);
Lang Hames
committed
}
}
Owen Anderson
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
mri_ = &mf_->getRegInfo();
tm_ = &fn.getTarget();
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
Dan Gohman
committed
aa_ = &getAnalysis<AliasAnalysis>();
Owen Anderson
committed
lv_ = &getAnalysis<LiveVariables>();
allocatableRegs_ = tri_->getAllocatableSet(fn);
Alkis Evlogimenos
committed
Evan Cheng
committed
processImplicitDefs();
Owen Anderson
committed
computeNumbering();
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second->print(OS, tri_);
OS << "\n";
OS << "********** MACHINEINSTRS **********\n";
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
OS << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
OS << getInstructionIndex(mii) << '\t' << *mii;
/// conflictsWithPhysRegDef - Returns true if the specified register
/// is defined during the duration of the specified interval.
bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
VirtRegMap &vrm, unsigned reg) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (MachineInstrIndex index = getBaseIndex(I->start),
end = getBaseIndex(I->end.prevSlot()).nextIndex(); index != end;
index = index.nextIndex()) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
index = index.nextIndex();
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
if (SrcReg == li.reg || DstReg == li.reg)
continue;
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& mop = MI->getOperand(i);
if (!mop.isReg())
continue;
unsigned PhysReg = mop.getReg();
if (PhysReg == 0 || PhysReg == li.reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
if (!vrm.hasPhys(PhysReg))
continue;
PhysReg = vrm.getPhys(PhysReg);
if (PhysReg && tri_->regsOverlap(PhysReg, reg))
return true;
}
}
}
return false;
}
Evan Cheng
committed
/// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
/// it can check use as well.
bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
unsigned Reg, bool CheckUse,
SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (MachineInstrIndex index = getBaseIndex(I->start),
end = getBaseIndex(I->end.prevSlot()).nextIndex(); index != end;
index = index.nextIndex()) {
Evan Cheng
committed
// Skip deleted instructions.
MachineInstr *MI = 0;
while (index != end) {
MI = getInstructionFromIndex(index);
if (MI)
break;
index = index.nextIndex();
Evan Cheng
committed
}
if (index == end) break;
if (JoinedCopies.count(MI))
continue;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isUse() && !CheckUse)
continue;
unsigned PhysReg = MO.getReg();
if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
continue;
if (tri_->isSubRegister(Reg, PhysReg))
return true;
}
}
}
return false;
}
void LiveIntervals::printRegName(unsigned reg) const {
if (TargetRegisterInfo::isPhysicalRegister(reg))
Alkis Evlogimenos
committed
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
MachineInstrIndex MIIdx,
MachineOperand& MO,
Evan Cheng
committed
unsigned MOIdx,
LiveInterval &interval) {
DEBUG({
errs() << "\t\tregister: ";
printRegName(interval.reg);
});
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
Evan Cheng
committed
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
MachineInstrIndex defIndex = getDefIndex(MIIdx);
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
VNInfo *ValNo;
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = mi;
Evan Cheng
committed
// Earlyclobbers move back one.
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
assert(ValNo->id == 0 && "First value in interval is not 0?");
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
MachineInstrIndex killIdx;
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0])).nextSlot();
killIdx = defIndex.nextSlot();
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
Jeffrey Yasskin
committed
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
ValNo->addKill(killIdx);
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb).nextSlot(), ValNo);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
Jeffrey Yasskin
committed
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
LiveRange LR(getMBBStartIdx(*I),
getMBBEndIdx(*I).nextSlot(), // MBB ends at -1.
ValNo);
interval.addRange(LR);
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
MachineInstrIndex killIdx = getUseIndex(getInstructionIndex(Kill)).nextSlot();
LiveRange LR(getMBBStartIdx(Kill->getParent()),
killIdx, ValNo);
ValNo->addKill(killIdx);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the
// def-and-use register operand.
if (mi->isRegTiedToUseOperand(MOIdx)) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
MachineInstrIndex DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
MachineInstrIndex RedefIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
RedefIndex = getUseIndex(MIIdx);
const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.prevSlot());
VNInfo *OldValNo = OldLR->valno;
// Delete the initial value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
// Two-address vregs should always only be redefined once. This means
// that at this point, there should be exactly one value number in it.
assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
Chris Lattner
committed
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
Lang Hames
committed
VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
Evan Cheng
committed
VNInfoAllocator);
ValNo->setFlags(OldValNo->getFlags()); // * <- updating here
Chris Lattner
committed
// Value#0 is now defined by the 2-addr instruction.
Evan Cheng
committed
OldValNo->def = RedefIndex;
Lang Hames
committed
OldValNo->setCopy(0);
if (MO.isEarlyClobber())
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
DEBUG(errs() << " replace range with " << LR);
ValNo->addKill(RedefIndex);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
Owen Anderson
committed
if (MO.isDead())
interval.addRange(LiveRange(RedefIndex, RedefIndex.nextSlot(), OldValNo));
DEBUG({
errs() << " RESULT: ";
interval.print(errs(), tri_);
});
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
assert(vi.Kills.size() == 1 &&
"PHI elimination vreg should have one kill, the PHI itself!");
// Remove the old range that we now know has an incorrect number.
VNInfo *VNI = interval.getValNumInfo(0);
MachineInstr *Killer = vi.Kills[0];
MachineInstrIndex Start = getMBBStartIdx(Killer->getParent());
MachineInstrIndex End = getUseIndex(getInstructionIndex(Killer)).nextSlot();
DEBUG({
errs() << " Removing [" << Start << "," << End << "] from: ";
interval.print(errs(), tri_);
errs() << "\n";
});
interval.removeRange(Start, End);
assert(interval.ranges.size() == 1 &&
"newly discovered PHI interval has >1 ranges.");
MachineBasicBlock *killMBB = getMBBFromIndex(interval.endIndex());
VNI->addKill(terminatorGaps[killMBB]);
DEBUG({
errs() << " RESULT: ";
interval.print(errs(), tri_);
});
// Replace the interval with one of a NEW value number. Note that this
// value number isn't actually defined by an instruction, weird huh? :)
LiveRange LR(Start, End,
interval.getNextValue(MachineInstrIndex(mbb->getNumber()),
0, false, VNInfoAllocator));
DEBUG(errs() << " replace range with " << LR);
LR.valno->addKill(End);
DEBUG({
errs() << " RESULT: ";
interval.print(errs(), tri_);
});
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
MachineInstrIndex defIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
Chris Lattner
committed
VNInfo *ValNo;
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
Chris Lattner
committed
MachineInstrIndex killIndex = getMBBEndIdx(mbb).nextSlot();
LiveRange LR(defIndex, killIndex, ValNo);
ValNo->addKill(terminatorGaps[mbb]);
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
MachineInstrIndex MIIdx,
Owen Anderson
committed
MachineOperand& MO,
Chris Lattner
committed
LiveInterval &interval,
Evan Cheng
committed
MachineInstr *CopyMI) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG({
errs() << "\t\tregister: ";
printRegName(interval.reg);
});
MachineInstrIndex baseIndex = MIIdx;
MachineInstrIndex start = getDefIndex(baseIndex);
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
start = getUseIndex(MIIdx);
MachineInstrIndex end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
Owen Anderson
committed
if (MO.isDead()) {
end = start.nextSlot();
goto exit;
Alkis Evlogimenos
committed
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
baseIndex = baseIndex.nextIndex();
while (++mi != MBB->end()) {
while (baseIndex.getVecIndex() < i2miMap_.size() &&
Owen Anderson
committed
getInstructionFromIndex(baseIndex) == 0)
baseIndex = baseIndex.nextIndex();
if (mi->killsRegister(interval.reg, tri_)) {
end = getUseIndex(baseIndex).nextSlot();
goto exit;
Evan Cheng
committed
} else {
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
if (DefIdx != -1) {
if (mi->isRegTiedToUseOperand(DefIdx)) {
// Two-address instruction.
end = getDefIndex(baseIndex);
if (mi->getOperand(DefIdx).isEarlyClobber())
end = getUseIndex(baseIndex);
} else {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
end = start.nextSlot();
Evan Cheng
committed
}
goto exit;
}
Owen Anderson
committed
baseIndex = baseIndex.nextIndex();
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
Evan Cheng
committed
// and never used. Another possible case is the implicit use of the
// physical register has been deleted by two-address pass.
end = start.nextSlot();
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
// Already exists? Extend old live interval.
LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
Evan Cheng
committed
bool Extend = OldLR != interval.end();
VNInfo *ValNo = Extend
? OldLR->valno : interval.getNextValue(start, CopyMI, true, VNInfoAllocator);
Evan Cheng
committed
if (MO.isEarlyClobber() && Extend)
LiveRange LR(start, end, ValNo);
LR.valno->addKill(end);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
MachineInstrIndex MIIdx,
Evan Cheng
committed
MachineOperand& MO,
unsigned MOIdx) {
Owen Anderson
committed
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Evan Cheng
committed
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()));
else if (allocatableRegs_[MO.getReg()]) {
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = MI;
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()), CopyMI);
Owen Anderson
committed
for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
// If MI also modifies the sub-register explicitly, avoid processing it
// more than once. Do not pass in TRI here so it checks for exact match.
if (!MI->modifiesRegister(*AS))
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(*AS), 0);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
MachineInstrIndex MIIdx,
DEBUG({
errs() << "\t\tlivein register: ";
printRegName(interval.reg);
});
// Look for kills, if it reaches a def before it's killed, then it shouldn't
// be considered a livein.
MachineBasicBlock::iterator mi = MBB->begin();
MachineInstrIndex baseIndex = MIIdx;
MachineInstrIndex start = baseIndex;
while (baseIndex.getVecIndex() < i2miMap_.size() &&
Owen Anderson
committed
getInstructionFromIndex(baseIndex) == 0)
baseIndex = baseIndex.nextIndex();
MachineInstrIndex end = baseIndex;
bool SeenDefUse = false;
Owen Anderson
committed
while (mi != MBB->end()) {
if (mi->killsRegister(interval.reg, tri_)) {
end = getUseIndex(baseIndex).nextSlot();
SeenDefUse = true;
} else if (mi->modifiesRegister(interval.reg, tri_)) {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)