Skip to content
X86InstrInfo.cpp 117 KiB
Newer Older
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "X86InstrInfo.h"
Evan Cheng's avatar
Evan Cheng committed
#include "X86GenInstrInfo.inc"
#include "X86MachineFunctionInfo.h"
Evan Cheng's avatar
Evan Cheng committed
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetAsmInfo.h"
namespace {
  cl::opt<bool>
  NoFusing("disable-spill-fusing",
           cl::desc("Disable fusing of spill code into instructions"));
  cl::opt<bool>
  PrintFailedFusing("print-failed-fuse-candidates",
                    cl::desc("Print instructions that the allocator wants to"
                             " fuse, but the X86 backend currently can't"),
                    cl::Hidden);
  cl::opt<bool>
  ReMatPICStubLoad("remat-pic-stub-load",
                   cl::desc("Re-materialize load from stub in PIC mode"),
                   cl::init(false), cl::Hidden);
Evan Cheng's avatar
Evan Cheng committed
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng's avatar
Evan Cheng committed
    TM(tm), RI(tm, *this) {
  SmallVector<unsigned,16> AmbEntries;
  static const unsigned OpTbl2Addr[][2] = {
    { X86::ADC32ri,     X86::ADC32mi },
    { X86::ADC32ri8,    X86::ADC32mi8 },
    { X86::ADC32rr,     X86::ADC32mr },
    { X86::ADC64ri32,   X86::ADC64mi32 },
    { X86::ADC64ri8,    X86::ADC64mi8 },
    { X86::ADC64rr,     X86::ADC64mr },
    { X86::ADD16ri,     X86::ADD16mi },
    { X86::ADD16ri8,    X86::ADD16mi8 },
    { X86::ADD16rr,     X86::ADD16mr },
    { X86::ADD32ri,     X86::ADD32mi },
    { X86::ADD32ri8,    X86::ADD32mi8 },
    { X86::ADD32rr,     X86::ADD32mr },
    { X86::ADD64ri32,   X86::ADD64mi32 },
    { X86::ADD64ri8,    X86::ADD64mi8 },
    { X86::ADD64rr,     X86::ADD64mr },
    { X86::ADD8ri,      X86::ADD8mi },
    { X86::ADD8rr,      X86::ADD8mr },
    { X86::AND16ri,     X86::AND16mi },
    { X86::AND16ri8,    X86::AND16mi8 },
    { X86::AND16rr,     X86::AND16mr },
    { X86::AND32ri,     X86::AND32mi },
    { X86::AND32ri8,    X86::AND32mi8 },
    { X86::AND32rr,     X86::AND32mr },
    { X86::AND64ri32,   X86::AND64mi32 },
    { X86::AND64ri8,    X86::AND64mi8 },
    { X86::AND64rr,     X86::AND64mr },
    { X86::AND8ri,      X86::AND8mi },
    { X86::AND8rr,      X86::AND8mr },
    { X86::DEC16r,      X86::DEC16m },
    { X86::DEC32r,      X86::DEC32m },
    { X86::DEC64_16r,   X86::DEC64_16m },
    { X86::DEC64_32r,   X86::DEC64_32m },
    { X86::DEC64r,      X86::DEC64m },
    { X86::DEC8r,       X86::DEC8m },
    { X86::INC16r,      X86::INC16m },
    { X86::INC32r,      X86::INC32m },
    { X86::INC64_16r,   X86::INC64_16m },
    { X86::INC64_32r,   X86::INC64_32m },
    { X86::INC64r,      X86::INC64m },
    { X86::INC8r,       X86::INC8m },
    { X86::NEG16r,      X86::NEG16m },
    { X86::NEG32r,      X86::NEG32m },
    { X86::NEG64r,      X86::NEG64m },
    { X86::NEG8r,       X86::NEG8m },
    { X86::NOT16r,      X86::NOT16m },
    { X86::NOT32r,      X86::NOT32m },
    { X86::NOT64r,      X86::NOT64m },
    { X86::NOT8r,       X86::NOT8m },
    { X86::OR16ri,      X86::OR16mi },
    { X86::OR16ri8,     X86::OR16mi8 },
    { X86::OR16rr,      X86::OR16mr },
    { X86::OR32ri,      X86::OR32mi },
    { X86::OR32ri8,     X86::OR32mi8 },
    { X86::OR32rr,      X86::OR32mr },
    { X86::OR64ri32,    X86::OR64mi32 },
    { X86::OR64ri8,     X86::OR64mi8 },
    { X86::OR64rr,      X86::OR64mr },
    { X86::OR8ri,       X86::OR8mi },
    { X86::OR8rr,       X86::OR8mr },
    { X86::ROL16r1,     X86::ROL16m1 },
    { X86::ROL16rCL,    X86::ROL16mCL },
    { X86::ROL16ri,     X86::ROL16mi },
    { X86::ROL32r1,     X86::ROL32m1 },
    { X86::ROL32rCL,    X86::ROL32mCL },
    { X86::ROL32ri,     X86::ROL32mi },
    { X86::ROL64r1,     X86::ROL64m1 },
    { X86::ROL64rCL,    X86::ROL64mCL },
    { X86::ROL64ri,     X86::ROL64mi },
    { X86::ROL8r1,      X86::ROL8m1 },
    { X86::ROL8rCL,     X86::ROL8mCL },
    { X86::ROL8ri,      X86::ROL8mi },
    { X86::ROR16r1,     X86::ROR16m1 },
    { X86::ROR16rCL,    X86::ROR16mCL },
    { X86::ROR16ri,     X86::ROR16mi },
    { X86::ROR32r1,     X86::ROR32m1 },
    { X86::ROR32rCL,    X86::ROR32mCL },
    { X86::ROR32ri,     X86::ROR32mi },
    { X86::ROR64r1,     X86::ROR64m1 },
    { X86::ROR64rCL,    X86::ROR64mCL },
    { X86::ROR64ri,     X86::ROR64mi },
    { X86::ROR8r1,      X86::ROR8m1 },
    { X86::ROR8rCL,     X86::ROR8mCL },
    { X86::ROR8ri,      X86::ROR8mi },
    { X86::SAR16r1,     X86::SAR16m1 },
    { X86::SAR16rCL,    X86::SAR16mCL },
    { X86::SAR16ri,     X86::SAR16mi },
    { X86::SAR32r1,     X86::SAR32m1 },
    { X86::SAR32rCL,    X86::SAR32mCL },
    { X86::SAR32ri,     X86::SAR32mi },
    { X86::SAR64r1,     X86::SAR64m1 },
    { X86::SAR64rCL,    X86::SAR64mCL },
    { X86::SAR64ri,     X86::SAR64mi },
    { X86::SAR8r1,      X86::SAR8m1 },
    { X86::SAR8rCL,     X86::SAR8mCL },
    { X86::SAR8ri,      X86::SAR8mi },
    { X86::SBB32ri,     X86::SBB32mi },
    { X86::SBB32ri8,    X86::SBB32mi8 },
    { X86::SBB32rr,     X86::SBB32mr },
    { X86::SBB64ri32,   X86::SBB64mi32 },
    { X86::SBB64ri8,    X86::SBB64mi8 },
    { X86::SBB64rr,     X86::SBB64mr },
    { X86::SHL16rCL,    X86::SHL16mCL },
    { X86::SHL16ri,     X86::SHL16mi },
    { X86::SHL32rCL,    X86::SHL32mCL },
    { X86::SHL32ri,     X86::SHL32mi },
    { X86::SHL64rCL,    X86::SHL64mCL },
    { X86::SHL64ri,     X86::SHL64mi },
    { X86::SHL8rCL,     X86::SHL8mCL },
    { X86::SHL8ri,      X86::SHL8mi },
    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
    { X86::SHLD16rri8,  X86::SHLD16mri8 },
    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
    { X86::SHLD32rri8,  X86::SHLD32mri8 },
    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
    { X86::SHLD64rri8,  X86::SHLD64mri8 },
    { X86::SHR16r1,     X86::SHR16m1 },
    { X86::SHR16rCL,    X86::SHR16mCL },
    { X86::SHR16ri,     X86::SHR16mi },
    { X86::SHR32r1,     X86::SHR32m1 },
    { X86::SHR32rCL,    X86::SHR32mCL },
    { X86::SHR32ri,     X86::SHR32mi },
    { X86::SHR64r1,     X86::SHR64m1 },
    { X86::SHR64rCL,    X86::SHR64mCL },
    { X86::SHR64ri,     X86::SHR64mi },
    { X86::SHR8r1,      X86::SHR8m1 },
    { X86::SHR8rCL,     X86::SHR8mCL },
    { X86::SHR8ri,      X86::SHR8mi },
    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
    { X86::SHRD16rri8,  X86::SHRD16mri8 },
    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
    { X86::SHRD32rri8,  X86::SHRD32mri8 },
    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
    { X86::SHRD64rri8,  X86::SHRD64mri8 },
    { X86::SUB16ri,     X86::SUB16mi },
    { X86::SUB16ri8,    X86::SUB16mi8 },
    { X86::SUB16rr,     X86::SUB16mr },
    { X86::SUB32ri,     X86::SUB32mi },
    { X86::SUB32ri8,    X86::SUB32mi8 },
    { X86::SUB32rr,     X86::SUB32mr },
    { X86::SUB64ri32,   X86::SUB64mi32 },
    { X86::SUB64ri8,    X86::SUB64mi8 },
    { X86::SUB64rr,     X86::SUB64mr },
    { X86::SUB8ri,      X86::SUB8mi },
    { X86::SUB8rr,      X86::SUB8mr },
    { X86::XOR16ri,     X86::XOR16mi },
    { X86::XOR16ri8,    X86::XOR16mi8 },
    { X86::XOR16rr,     X86::XOR16mr },
    { X86::XOR32ri,     X86::XOR32mi },
    { X86::XOR32ri8,    X86::XOR32mi8 },
    { X86::XOR32rr,     X86::XOR32mr },
    { X86::XOR64ri32,   X86::XOR64mi32 },
    { X86::XOR64ri8,    X86::XOR64mi8 },
    { X86::XOR64rr,     X86::XOR64mr },
    { X86::XOR8ri,      X86::XOR8mi },
    { X86::XOR8rr,      X86::XOR8mr }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    unsigned RegOp = OpTbl2Addr[i][0];
    unsigned MemOp = OpTbl2Addr[i][1];
    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
                                                     MemOp)).second)
      assert(false && "Duplicated entries?");
    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                                std::make_pair(RegOp,
                                                              AuxInfo))).second)
      AmbEntries.push_back(MemOp);
  }

  // If the third value is 1, then it's folding either a load or a store.
  static const unsigned OpTbl0[][3] = {
    { X86::BT16ri8,     X86::BT16mi8, 1 },
    { X86::BT32ri8,     X86::BT32mi8, 1 },
    { X86::BT64ri8,     X86::BT64mi8, 1 },
    { X86::CALL32r,     X86::CALL32m, 1 },
    { X86::CALL64r,     X86::CALL64m, 1 },
    { X86::CMP16ri,     X86::CMP16mi, 1 },
    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
    { X86::CMP16rr,     X86::CMP16mr, 1 },
    { X86::CMP32ri,     X86::CMP32mi, 1 },
    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
    { X86::CMP32rr,     X86::CMP32mr, 1 },
    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
    { X86::CMP64rr,     X86::CMP64mr, 1 },
    { X86::CMP8rr,      X86::CMP8mr, 1 },
    { X86::DIV16r,      X86::DIV16m, 1 },
    { X86::DIV32r,      X86::DIV32m, 1 },
    { X86::DIV64r,      X86::DIV64m, 1 },
    { X86::DIV8r,       X86::DIV8m, 1 },
    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
    { X86::IDIV16r,     X86::IDIV16m, 1 },
    { X86::IDIV32r,     X86::IDIV32m, 1 },
    { X86::IDIV64r,     X86::IDIV64m, 1 },
    { X86::IDIV8r,      X86::IDIV8m, 1 },
    { X86::IMUL16r,     X86::IMUL16m, 1 },
    { X86::IMUL32r,     X86::IMUL32m, 1 },
    { X86::IMUL64r,     X86::IMUL64m, 1 },
    { X86::IMUL8r,      X86::IMUL8m, 1 },
    { X86::JMP32r,      X86::JMP32m, 1 },
    { X86::JMP64r,      X86::JMP64m, 1 },
    { X86::MOV16ri,     X86::MOV16mi, 0 },
    { X86::MOV16rr,     X86::MOV16mr, 0 },
    { X86::MOV32ri,     X86::MOV32mi, 0 },
    { X86::MOV32rr,     X86::MOV32mr, 0 },
    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
    { X86::MOV64rr,     X86::MOV64mr, 0 },
    { X86::MOV8ri,      X86::MOV8mi, 0 },
    { X86::MOV8rr,      X86::MOV8mr, 0 },
    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
    { X86::MOVDQArr,    X86::MOVDQAmr, 0 },
    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
    { X86::MUL16r,      X86::MUL16m, 1 },
    { X86::MUL32r,      X86::MUL32m, 1 },
    { X86::MUL64r,      X86::MUL64m, 1 },
    { X86::MUL8r,       X86::MUL8m, 1 },
    { X86::SETAEr,      X86::SETAEm, 0 },
    { X86::SETAr,       X86::SETAm, 0 },
    { X86::SETBEr,      X86::SETBEm, 0 },
    { X86::SETBr,       X86::SETBm, 0 },
    { X86::SETEr,       X86::SETEm, 0 },
    { X86::SETGEr,      X86::SETGEm, 0 },
    { X86::SETGr,       X86::SETGm, 0 },
    { X86::SETLEr,      X86::SETLEm, 0 },
    { X86::SETLr,       X86::SETLm, 0 },
    { X86::SETNEr,      X86::SETNEm, 0 },
    { X86::SETNPr,      X86::SETNPm, 0 },
    { X86::SETNSr,      X86::SETNSm, 0 },
    { X86::SETPr,       X86::SETPm, 0 },
    { X86::SETSr,       X86::SETSm, 0 },
    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
    { X86::TEST16ri,    X86::TEST16mi, 1 },
    { X86::TEST32ri,    X86::TEST32mi, 1 },
    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
    { X86::TEST8ri,     X86::TEST8mi, 1 }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    unsigned RegOp = OpTbl0[i][0];
    unsigned MemOp = OpTbl0[i][1];
    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
                                                 MemOp)).second)
      assert(false && "Duplicated entries?");
    unsigned FoldedLoad = OpTbl0[i][2];
    // Index 0, folded load or store.
    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                     std::make_pair(RegOp, AuxInfo))).second)
        AmbEntries.push_back(MemOp);
  }

  static const unsigned OpTbl1[][2] = {
    { X86::CMP16rr,         X86::CMP16rm },
    { X86::CMP32rr,         X86::CMP32rm },
    { X86::CMP64rr,         X86::CMP64rm },
    { X86::CMP8rr,          X86::CMP8rm },
    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
    { X86::FsMOVAPDrr,      X86::MOVSDrm },
    { X86::FsMOVAPSrr,      X86::MOVSSrm },
    { X86::IMUL16rri,       X86::IMUL16rmi },
    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
    { X86::IMUL32rri,       X86::IMUL32rmi },
    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
    { X86::MOV16rr,         X86::MOV16rm },
    { X86::MOV32rr,         X86::MOV32rm },
    { X86::MOV64rr,         X86::MOV64rm },
    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
    { X86::MOV8rr,          X86::MOV8rm },
    { X86::MOVAPDrr,        X86::MOVAPDrm },
    { X86::MOVAPSrr,        X86::MOVAPSrm },
    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
    { X86::MOVDQArr,        X86::MOVDQArm },
    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
    { X86::MOVSDrr,         X86::MOVSDrm },
    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
    { X86::MOVSSrr,         X86::MOVSSrm },
    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
    { X86::MOVUPDrr,        X86::MOVUPDrm },
    { X86::MOVUPSrr,        X86::MOVUPSrm },
    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
    { X86::PSHUFDri,        X86::PSHUFDmi },
    { X86::PSHUFHWri,       X86::PSHUFHWmi },
    { X86::PSHUFLWri,       X86::PSHUFLWmi },
    { X86::RCPPSr,          X86::RCPPSm },
    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
    { X86::RSQRTPSr,        X86::RSQRTPSm },
    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
    { X86::RSQRTSSr,        X86::RSQRTSSm },
    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
    { X86::SQRTPDr,         X86::SQRTPDm },
    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
    { X86::SQRTPSr,         X86::SQRTPSm },
    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
    { X86::SQRTSDr,         X86::SQRTSDm },
    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
    { X86::SQRTSSr,         X86::SQRTSSm },
    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
    { X86::TEST16rr,        X86::TEST16rm },
    { X86::TEST32rr,        X86::TEST32rm },
    { X86::TEST64rr,        X86::TEST64rm },
    { X86::TEST8rr,         X86::TEST8rm },
    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    { X86::UCOMISDrr,       X86::UCOMISDrm },
    { X86::UCOMISSrr,       X86::UCOMISSrm }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    unsigned RegOp = OpTbl1[i][0];
    unsigned MemOp = OpTbl1[i][1];
    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
                                                 MemOp)).second)
      assert(false && "Duplicated entries?");
    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                     std::make_pair(RegOp, AuxInfo))).second)
        AmbEntries.push_back(MemOp);
  }

  static const unsigned OpTbl2[][2] = {
    { X86::ADC32rr,         X86::ADC32rm },
    { X86::ADC64rr,         X86::ADC64rm },
    { X86::ADD16rr,         X86::ADD16rm },
    { X86::ADD32rr,         X86::ADD32rm },
    { X86::ADD64rr,         X86::ADD64rm },
    { X86::ADD8rr,          X86::ADD8rm },
    { X86::ADDPDrr,         X86::ADDPDrm },
    { X86::ADDPSrr,         X86::ADDPSrm },
    { X86::ADDSDrr,         X86::ADDSDrm },
    { X86::ADDSSrr,         X86::ADDSSrm },
    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
    { X86::AND16rr,         X86::AND16rm },
    { X86::AND32rr,         X86::AND32rm },
    { X86::AND64rr,         X86::AND64rm },
    { X86::AND8rr,          X86::AND8rm },
    { X86::ANDNPDrr,        X86::ANDNPDrm },
    { X86::ANDNPSrr,        X86::ANDNPSrm },
    { X86::ANDPDrr,         X86::ANDPDrm },
    { X86::ANDPSrr,         X86::ANDPSrm },
    { X86::CMOVA16rr,       X86::CMOVA16rm },
    { X86::CMOVA32rr,       X86::CMOVA32rm },
    { X86::CMOVA64rr,       X86::CMOVA64rm },
    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
    { X86::CMOVB16rr,       X86::CMOVB16rm },
    { X86::CMOVB32rr,       X86::CMOVB32rm },
    { X86::CMOVB64rr,       X86::CMOVB64rm },
    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
    { X86::CMOVE16rr,       X86::CMOVE16rm },
    { X86::CMOVE32rr,       X86::CMOVE32rm },
    { X86::CMOVE64rr,       X86::CMOVE64rm },
    { X86::CMOVG16rr,       X86::CMOVG16rm },
    { X86::CMOVG32rr,       X86::CMOVG32rm },
    { X86::CMOVG64rr,       X86::CMOVG64rm },
    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
    { X86::CMOVL16rr,       X86::CMOVL16rm },
    { X86::CMOVL32rr,       X86::CMOVL32rm },
    { X86::CMOVL64rr,       X86::CMOVL64rm },
    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
    { X86::CMOVNO16rr,      X86::CMOVNO16rm },
    { X86::CMOVNO32rr,      X86::CMOVNO32rm },
    { X86::CMOVNO64rr,      X86::CMOVNO64rm },
    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
    { X86::CMOVO16rr,       X86::CMOVO16rm },
    { X86::CMOVO32rr,       X86::CMOVO32rm },
    { X86::CMOVO64rr,       X86::CMOVO64rm },
    { X86::CMOVP16rr,       X86::CMOVP16rm },
    { X86::CMOVP32rr,       X86::CMOVP32rm },
    { X86::CMOVP64rr,       X86::CMOVP64rm },
    { X86::CMOVS16rr,       X86::CMOVS16rm },
    { X86::CMOVS32rr,       X86::CMOVS32rm },
    { X86::CMOVS64rr,       X86::CMOVS64rm },
    { X86::CMPPDrri,        X86::CMPPDrmi },
    { X86::CMPPSrri,        X86::CMPPSrmi },
    { X86::CMPSDrr,         X86::CMPSDrm },
    { X86::CMPSSrr,         X86::CMPSSrm },
    { X86::DIVPDrr,         X86::DIVPDrm },
    { X86::DIVPSrr,         X86::DIVPSrm },
    { X86::DIVSDrr,         X86::DIVSDrm },
    { X86::DIVSSrr,         X86::DIVSSrm },
    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
    { X86::FsANDPDrr,       X86::FsANDPDrm },
    { X86::FsANDPSrr,       X86::FsANDPSrm },
    { X86::FsORPDrr,        X86::FsORPDrm },
    { X86::FsORPSrr,        X86::FsORPSrm },
    { X86::FsXORPDrr,       X86::FsXORPDrm },
    { X86::FsXORPSrr,       X86::FsXORPSrm },
    { X86::HADDPDrr,        X86::HADDPDrm },
    { X86::HADDPSrr,        X86::HADDPSrm },
    { X86::HSUBPDrr,        X86::HSUBPDrm },
    { X86::HSUBPSrr,        X86::HSUBPSrm },
    { X86::IMUL16rr,        X86::IMUL16rm },
    { X86::IMUL32rr,        X86::IMUL32rm },
    { X86::IMUL64rr,        X86::IMUL64rm },
    { X86::MAXPDrr,         X86::MAXPDrm },
    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
    { X86::MAXPSrr,         X86::MAXPSrm },
    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
    { X86::MAXSDrr,         X86::MAXSDrm },
    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
    { X86::MAXSSrr,         X86::MAXSSrm },
    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
    { X86::MINPDrr,         X86::MINPDrm },
    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
    { X86::MINPSrr,         X86::MINPSrm },
    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
    { X86::MINSDrr,         X86::MINSDrm },
    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
    { X86::MINSSrr,         X86::MINSSrm },
    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
    { X86::MULPDrr,         X86::MULPDrm },
    { X86::MULPSrr,         X86::MULPSrm },
    { X86::MULSDrr,         X86::MULSDrm },
    { X86::MULSSrr,         X86::MULSSrm },
    { X86::OR16rr,          X86::OR16rm },
    { X86::OR32rr,          X86::OR32rm },
    { X86::OR64rr,          X86::OR64rm },
    { X86::OR8rr,           X86::OR8rm },
    { X86::ORPDrr,          X86::ORPDrm },
    { X86::ORPSrr,          X86::ORPSrm },
    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
    { X86::PADDBrr,         X86::PADDBrm },
    { X86::PADDDrr,         X86::PADDDrm },
    { X86::PADDQrr,         X86::PADDQrm },
    { X86::PADDSBrr,        X86::PADDSBrm },
    { X86::PADDSWrr,        X86::PADDSWrm },
    { X86::PADDWrr,         X86::PADDWrm },
    { X86::PANDNrr,         X86::PANDNrm },
    { X86::PANDrr,          X86::PANDrm },
    { X86::PAVGBrr,         X86::PAVGBrm },
    { X86::PAVGWrr,         X86::PAVGWrm },
    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
    { X86::PINSRWrri,       X86::PINSRWrmi },
    { X86::PMADDWDrr,       X86::PMADDWDrm },
    { X86::PMAXSWrr,        X86::PMAXSWrm },
    { X86::PMAXUBrr,        X86::PMAXUBrm },
    { X86::PMINSWrr,        X86::PMINSWrm },
    { X86::PMINUBrr,        X86::PMINUBrm },
    { X86::PMULDQrr,        X86::PMULDQrm },
    { X86::PMULHUWrr,       X86::PMULHUWrm },
    { X86::PMULHWrr,        X86::PMULHWrm },
    { X86::PMULLDrr,        X86::PMULLDrm },
    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
    { X86::PMULLWrr,        X86::PMULLWrm },
    { X86::PMULUDQrr,       X86::PMULUDQrm },
    { X86::PORrr,           X86::PORrm },
    { X86::PSADBWrr,        X86::PSADBWrm },
    { X86::PSLLDrr,         X86::PSLLDrm },
    { X86::PSLLQrr,         X86::PSLLQrm },
    { X86::PSLLWrr,         X86::PSLLWrm },
    { X86::PSRADrr,         X86::PSRADrm },
    { X86::PSRAWrr,         X86::PSRAWrm },
    { X86::PSRLDrr,         X86::PSRLDrm },
    { X86::PSRLQrr,         X86::PSRLQrm },
    { X86::PSRLWrr,         X86::PSRLWrm },
    { X86::PSUBBrr,         X86::PSUBBrm },
    { X86::PSUBDrr,         X86::PSUBDrm },
    { X86::PSUBSBrr,        X86::PSUBSBrm },
    { X86::PSUBSWrr,        X86::PSUBSWrm },
    { X86::PSUBWrr,         X86::PSUBWrm },
    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
    { X86::PXORrr,          X86::PXORrm },
    { X86::SBB32rr,         X86::SBB32rm },
    { X86::SBB64rr,         X86::SBB64rm },
    { X86::SHUFPDrri,       X86::SHUFPDrmi },
    { X86::SHUFPSrri,       X86::SHUFPSrmi },
    { X86::SUB16rr,         X86::SUB16rm },
    { X86::SUB32rr,         X86::SUB32rm },
    { X86::SUB64rr,         X86::SUB64rm },
    { X86::SUB8rr,          X86::SUB8rm },
    { X86::SUBPDrr,         X86::SUBPDrm },
    { X86::SUBPSrr,         X86::SUBPSrm },
    { X86::SUBSDrr,         X86::SUBSDrm },
    { X86::SUBSSrr,         X86::SUBSSrm },
    // FIXME: TEST*rr -> swapped operand of TEST*mr.
    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
    { X86::XOR16rr,         X86::XOR16rm },
    { X86::XOR32rr,         X86::XOR32rm },
    { X86::XOR64rr,         X86::XOR64rm },
    { X86::XOR8rr,          X86::XOR8rm },
    { X86::XORPDrr,         X86::XORPDrm },
    { X86::XORPSrr,         X86::XORPSrm }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
    unsigned RegOp = OpTbl2[i][0];
    unsigned MemOp = OpTbl2[i][1];
    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
                                                 MemOp)).second)
      assert(false && "Duplicated entries?");
Dan Gohman's avatar
Dan Gohman committed
    unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                   std::make_pair(RegOp, AuxInfo))).second)
      AmbEntries.push_back(MemOp);
  }

  // Remove ambiguous entries.
  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
                               unsigned &SrcReg, unsigned &DstReg,
                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
  switch (MI.getOpcode()) {
  default:
    return false;
  case X86::MOV8rr:
  case X86::MOV16rr:
  case X86::MOV32rr: 
  case X86::MOV64rr:
  case X86::MOVSSrr:
  case X86::MOVSDrr:

  // FP Stack register class copies
  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
      
  case X86::FsMOVAPSrr:
  case X86::FsMOVAPDrr:
  case X86::MOVAPSrr:
  case X86::MOVAPDrr:
  case X86::MOVDQArr:
  case X86::MOVSS2PSrr:
  case X86::MOVSD2PDrr:
  case X86::MOVPS2SSrr:
  case X86::MOVPD2SDrr:
  case X86::MMX_MOVQ64rr:
    assert(MI.getNumOperands() >= 2 &&
           MI.getOperand(0).isReg() &&
           MI.getOperand(1).isReg() &&
           "invalid register-register move instruction");
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    SrcSubIdx = MI.getOperand(1).getSubReg();
    DstSubIdx = MI.getOperand(0).getSubReg();
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 
                                           int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8rm:
  case X86::MOV16rm:
  case X86::MOV32rm:
Evan Cheng's avatar
Evan Cheng committed
  case X86::MOV64rm:
  case X86::MOVDQArm:
  case X86::MMX_MOVD64rm:
  case X86::MMX_MOVQ64rm:
    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
      FrameIndex = MI->getOperand(1).getIndex();
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
                                          int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8mr:
  case X86::MOV16mr:
  case X86::MOV32mr:
Evan Cheng's avatar
Evan Cheng committed
  case X86::MOV64mr:
  case X86::ST_FpP64m:
  case X86::MOVDQAmr:
  case X86::MMX_MOVD64mr:
  case X86::MMX_MOVQ64mr:
  case X86::MMX_MOVNTQmr:
    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner's avatar
Chris Lattner committed
        MI->getOperand(2).getReg() == 0 &&
      FrameIndex = MI->getOperand(0).getIndex();
      return MI->getOperand(X86AddrNumOperands).getReg();
Evan Cheng's avatar
Evan Cheng committed
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
/// X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Cheng's avatar
Evan Cheng committed
  bool isPICBase = false;
  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
         E = MRI.def_end(); I != E; ++I) {
    MachineInstr *DefMI = I.getOperand().getParent();
    if (DefMI->getOpcode() != X86::MOVPC32r)
      return false;
    assert(!isPICBase && "More than one PIC base?");
    isPICBase = true;
  }
  return isPICBase;
}
Evan Cheng's avatar
Evan Cheng committed

/// isGVStub - Return true if the GV requires an extra load to get the
/// real address.
static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
}

/// CanRematLoadWithDispOperand - Return true if a load with the specified
/// operand is a candidate for remat: for this to be true we need to know that
/// the load will always return the same value, even if moved.
static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
                                        X86TargetMachine &TM) {
  // Loads from constant pool entries can be remat'd.
  if (MO.isCPI()) return true;
  
  // We can remat globals in some cases.
  if (MO.isGlobal()) {
    // If this is a load of a stub, not of the global, we can remat it.  This
    // access will always return the address of the global.
    if (isGVStub(MO.getGlobal(), TM))
      return true;
    
    // If the global itself is constant, we can remat the load.
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
      if (GV->isConstant())
        return true;
  }
  return false;
}
bool
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
    case X86::MOV8rm:
    case X86::MOV16rm:
    case X86::MOV32rm:
    case X86::MOV64rm:
    case X86::LD_Fp64m:
    case X86::MOVSSrm:
    case X86::MOVSDrm:
    case X86::MOVAPSrm:
    case X86::MOVAPDrm:
    case X86::MOVDQArm:
    case X86::MMX_MOVD64rm:
    case X86::MMX_MOVQ64rm: {
      // Loads from constant pools are trivially rematerializable.
      if (MI->getOperand(1).isReg() &&
          MI->getOperand(2).isImm() &&
          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
          CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
        unsigned BaseReg = MI->getOperand(1).getReg();
        if (BaseReg == 0 || BaseReg == X86::RIP)
          return true;
        // Allow re-materialization of PIC load.
        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
        const MachineFunction &MF = *MI->getParent()->getParent();
        const MachineRegisterInfo &MRI = MF.getRegInfo();
        bool isPICBase = false;
        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
               E = MRI.def_end(); I != E; ++I) {
          MachineInstr *DefMI = I.getOperand().getParent();
          if (DefMI->getOpcode() != X86::MOVPC32r)
            return false;
          assert(!isPICBase && "More than one PIC base?");
          isPICBase = true;
        }
        return isPICBase;
      } 
      return false;
 
     case X86::LEA32r:
     case X86::LEA64r: {
       if (MI->getOperand(2).isImm() &&
           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
           !MI->getOperand(4).isReg()) {
         // lea fi#, lea GV, etc. are all rematerializable.
         if (!MI->getOperand(1).isReg())
         unsigned BaseReg = MI->getOperand(1).getReg();
         if (BaseReg == 0)
           return true;
         // Allow re-materialization of lea PICBase + x.
         const MachineFunction &MF = *MI->getParent()->getParent();
         const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng's avatar
Evan Cheng committed
         return regIsPICBase(BaseReg, MRI);
  // All other instructions marked M_REMATERIALIZABLE are always trivially
  // rematerializable.
  return true;
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
/// would clobber the EFLAGS condition register. Note the result may be
/// conservative. If it cannot definitely determine the safety after visiting
/// two instructions it assumes it's not safe.
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator I) {
  // It's always safe to clobber EFLAGS at the end of a block.
  if (I == MBB.end())
    return true;

  // For compile time consideration, if we are not able to determine the
  // safety after visiting 2 instructions, we will assume it's not safe.
  for (unsigned i = 0; i < 2; ++i) {
    bool SeenDef = false;
    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
      MachineOperand &MO = I->getOperand(j);
        continue;
      if (MO.getReg() == X86::EFLAGS) {
        if (MO.isUse())
          return false;
        SeenDef = true;
      }
    }

    if (SeenDef)
      // This instruction defines EFLAGS, no need to look any further.
      return true;
    ++I;

    // If we make it to the end of the block, it's safe to clobber EFLAGS.
    if (I == MBB.end())
      return true;
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator I,
                                 unsigned DestReg,
                                 const MachineInstr *Orig) const {
  DebugLoc DL = DebugLoc::getUnknownLoc();
  if (I != MBB.end()) DL = I->getDebugLoc();

  unsigned SubIdx = Orig->getOperand(0).isReg()
    ? Orig->getOperand(0).getSubReg() : 0;
  bool ChangeSubIdx = SubIdx != 0;
  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
    DestReg = RI.getSubReg(DestReg, SubIdx);
    SubIdx = 0;
  }

  // MOV32r0 etc. are implemented with xor which clobbers condition code.
  // Re-materialize them as movri instructions to avoid side effects.
  switch (Orig->getOpcode()) {
  case X86::MOV8r0:
  case X86::MOV16r0:
  case X86::MOV32r0:
  case X86::MOV64r0: {
    if (!isSafeToClobberEFLAGS(MBB, I)) {
      unsigned Opc = 0;
      switch (Orig->getOpcode()) {
      default: break;
      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
      case X86::MOV16r0: Opc = X86::MOV16ri; break;
      case X86::MOV32r0: Opc = X86::MOV32ri; break;
      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
      }
      BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
    MI->getOperand(0).setReg(DestReg);
    MBB.insert(I, MI);
  }

  if (ChangeSubIdx) {
    MachineInstr *NewMI = prior(I);
    NewMI->getOperand(0).setSubReg(SubIdx);
  }
/// isInvariantLoad - Return true if the specified instruction (which is marked
/// mayLoad) is loading from a location whose value is invariant across the
/// function.  For example, loading a value from the constant pool or from
/// from the argument area of a function if it does not change.  This should
/// only return true of *all* loads the instruction does are invariant (if it
/// does multiple loads).
bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
  // This code cares about loads from three cases: constant pool entries,
  // invariant argument slots, and global stubs.  In order to handle these cases
  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
  // operand and base our analysis on it.  This is safe because the address of
  // none of these three cases is ever used as anything other than a load base
  // and X86 doesn't have any instructions that load from multiple places.
  
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    // Loads from constant pools are trivially invariant.
Evan Cheng's avatar
Evan Cheng committed

Evan Cheng's avatar
Evan Cheng committed
      return isGVStub(MO.getGlobal(), TM);

    // If this is a load from an invariant stack slot, the load is a constant.
      const MachineFrameInfo &MFI =
        *MI->getParent()->getParent()->getFrameInfo();
      int Idx = MO.getIndex();
      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
    }
  // All other instances of these instructions are presumed to have other
  // issues.