Newer
Older
Evan Cheng
committed
unsigned minReg = 0; /*cur->preference*/; // Try the pref register first.
bool Found = false;
std::vector<std::pair<unsigned,float> > RegsWeights;
if (!minReg || SpillWeights[minReg] == HUGE_VALF)
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
e = RC->allocation_order_end(*mf_); i != e; ++i) {
unsigned reg = *i;
float regWeight = SpillWeights[reg];
if (minWeight > regWeight)
Found = true;
RegsWeights.push_back(std::make_pair(reg, regWeight));
Alkis Evlogimenos
committed
}
// If we didn't find a register that is spillable, try aliases?
if (!Found) {
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
e = RC->allocation_order_end(*mf_); i != e; ++i) {
unsigned reg = *i;
// No need to worry about if the alias register size < regsize of RC.
// We are going to spill all registers that alias it anyway.
for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
}
}
// Sort all potential spill candidates by weight.
std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
minReg = RegsWeights[0].first;
minWeight = RegsWeights[0].second;
if (minWeight == HUGE_VALF) {
// All registers must have inf weight. Just grab one!
minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
if (cur->weight == HUGE_VALF ||
Evan Cheng
committed
li_->getApproximateInstructionCount(*cur) == 0) {
// Spill a physical register around defs and uses.
if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
// spillPhysRegAroundRegDefsUses may have invalidated iterator stored
// in fixed_. Reset them.
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
IntervalPtr &IP = fixed_[i];
LiveInterval *I = IP.first;
if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
IP.second = I->advanceTo(I->begin(), StartPosition);
}
DowngradedRegs.clear();
assignRegOrStackSlotAtInterval(cur);
} else {
cerr << "Ran out of registers during register allocation!\n";
exit(1);
}
Evan Cheng
committed
return;
}
}
// Find up to 3 registers to consider as spill candidates.
unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
while (LastCandidate > 1) {
if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
break;
--LastCandidate;
}
DOUT << "\t\tregister(s) with min weight(s): ";
DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
DOUT << tri_->getName(RegsWeights[i].first)
<< " (" << RegsWeights[i].second << ")\n");
// If the current has the minimum weight, we need to spill it and
// add any added intervals back to unhandled, and restart
// linearscan.
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
DOUT << "\t\t\tspilling(c): " << *cur << '\n';
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> added =
li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_, SSWeight);
std::sort(added.begin(), added.end(), LISorter());
addStackInterval(cur, ls_, li_, SSWeight, *vrm_);
if (added.empty())
return; // Early exit if all spills were folded.
// Merge added with unhandled. Note that we have already sorted
// intervals returned by addIntervalsForSpills by their starting
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
// This also update the NextReloadMap. That is, it adds mapping from a
// register defined by a reload from SS to the next reload from SS in the
// same basic block.
MachineBasicBlock *LastReloadMBB = 0;
LiveInterval *LastReload = 0;
int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
for (unsigned i = 0, e = added.size(); i != e; ++i) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
unsigned ReloadIdx = ReloadLi->beginNumber();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginNumber() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
LastReload = ReloadLi;
LastReloadSS = ReloadSS;
}
unhandled_.push(ReloadLi);
}
++NumBacktracks;
// Push the current interval back to unhandled since we are going
// to re-run at least this iteration. Since we didn't modify it it
// should go back right in the front of the list
unhandled_.push(cur);
assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
"did not choose a register to spill?");
// We spill all intervals aliasing the register with
// minimum weight, rollback to the interval with the earliest
// start point and let the linear scan algorithm run again
SmallVector<LiveInterval*, 8> spillIs;
// Determine which intervals have to be spilled.
findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
// Set of spilled vregs (used later to rollback properly)
SmallSet<unsigned, 8> spilled;
// The earliest start of a Spilled interval indicates up to where
// in handled we need to roll back
unsigned earliestStart = cur->beginNumber();
// Spill live intervals of virtual regs mapped to the physical register we
// want to clear (and its aliases). We only spill those that overlap with the
// current interval as the rest do not affect its allocation. we also keep
// track of the earliest start of all spilled live intervals since this will
// mark our rollback point.
std::vector<LiveInterval*> added;
while (!spillIs.empty()) {
LiveInterval *sli = spillIs.back();
spillIs.pop_back();
DOUT << "\t\t\tspilling(a): " << *sli << '\n';
earliestStart = std::min(earliestStart, sli->beginNumber());
float SSWeight;
std::vector<LiveInterval*> newIs =
li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_, SSWeight);
addStackInterval(sli, ls_, li_, SSWeight, *vrm_);
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
spilled.insert(sli->reg);
DOUT << "\t\trolling back to: " << earliestStart << '\n';
// Scan handled in reverse order up to the earliest start of a
// spilled live interval and undo each one, restoring the state of
while (!handled_.empty()) {
LiveInterval* i = handled_.back();
// If this interval starts before t we are done.
if (i->beginNumber() < earliestStart)
DOUT << "\t\t\tundo changes for: " << *i << '\n';
// When undoing a live interval allocation we must know if it is active or
// inactive to properly update regUse_ and the VirtRegMap.
if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
} else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
"Can only allocate virtual registers!");
vrm_->clearVirt(i->reg);
Evan Cheng
committed
DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
if (ii == DowngradeMap.end())
// It interval has a preference, it must be defined by a copy. Clear the
// preference now since the source interval allocation may have been
// undone as well.
i->preference = 0;
else {
UpgradeRegister(ii->second);
}
// Rewind the iterators in the active, inactive, and fixed lists back to the
// point we reverted to.
RevertVectorIteratorsTo(active_, earliestStart);
RevertVectorIteratorsTo(inactive_, earliestStart);
RevertVectorIteratorsTo(fixed_, earliestStart);
// Scan the rest and undo each interval that expired after t and
// insert it in active (the next iteration of the algorithm will
// put it in inactive if required)
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
LiveInterval *HI = handled_[i];
if (!HI->expiredAt(earliestStart) &&
HI->expiredAt(cur->beginNumber())) {
DOUT << "\t\t\tundo changes for: " << *HI << '\n';
active_.push_back(std::make_pair(HI, HI->begin()));
assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
// Merge added with unhandled.
// This also update the NextReloadMap. That is, it adds mapping from a
// register defined by a reload from SS to the next reload from SS in the
// same basic block.
MachineBasicBlock *LastReloadMBB = 0;
LiveInterval *LastReload = 0;
int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
std::sort(added.begin(), added.end(), LISorter());
for (unsigned i = 0, e = added.size(); i != e; ++i) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
unsigned ReloadIdx = ReloadLi->beginNumber();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginNumber() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
LastReload = ReloadLi;
LastReloadSS = ReloadSS;
}
unhandled_.push(ReloadLi);
}
}
unsigned RALinScan::getFreePhysReg(const TargetRegisterClass *RC,
unsigned MaxInactiveCount,
SmallVector<unsigned, 256> &inactiveCounts,
bool SkipDGRegs) {
unsigned FreeReg = 0;
unsigned FreeRegInactiveCount = 0;
TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_);
TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_);
assert(I != E && "No allocatable register in this register class!");
// Scan for the first available register.
for (; I != E; ++I) {
unsigned Reg = *I;
// Ignore "downgraded" registers.
if (SkipDGRegs && DowngradedRegs.count(Reg))
continue;
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
FreeReg = Reg;
if (FreeReg < inactiveCounts.size())
FreeRegInactiveCount = inactiveCounts[FreeReg];
else
FreeRegInactiveCount = 0;
break;
}
}
// If there are no free regs, or if this reg has the max inactive count,
// return this register.
if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
return FreeReg;
// Continue scanning the registers, looking for the one with the highest
// inactive count. Alkis found that this reduced register pressure very
// slightly on X86 (in rev 1.94 of this file), though this should probably be
// reevaluated now.
for (; I != E; ++I) {
unsigned Reg = *I;
// Ignore "downgraded" registers.
if (SkipDGRegs && DowngradedRegs.count(Reg))
continue;
if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
FreeRegInactiveCount < inactiveCounts[Reg]) {
FreeReg = Reg;
FreeRegInactiveCount = inactiveCounts[Reg];
if (FreeRegInactiveCount == MaxInactiveCount)
break; // We found the one with the max inactive count.
}
}
return FreeReg;
/// getFreePhysReg - return a free physical register for this virtual register
/// interval if we have one, otherwise return 0.
Bill Wendling
committed
unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
SmallVector<unsigned, 256> inactiveCounts;
unsigned MaxInactiveCount = 0;
const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
i != e; ++i) {
unsigned reg = i->first->reg;
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
// If this is not in a related reg class to the register we're allocating,
// don't check it.
const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
reg = vrm_->getPhys(reg);
if (inactiveCounts.size() <= reg)
inactiveCounts.resize(reg+1);
++inactiveCounts[reg];
MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
}
}
// If copy coalescer has assigned a "preferred" register, check if it's
// available first.
DOUT << "(preferred: " << tri_->getName(cur->preference) << ") ";
RC->contains(cur->preference))
return cur->preference;
if (!DowngradedRegs.empty()) {
unsigned FreeReg = getFreePhysReg(RC, MaxInactiveCount, inactiveCounts,
true);
if (FreeReg)
return FreeReg;
return getFreePhysReg(RC, MaxInactiveCount, inactiveCounts, false);
Alkis Evlogimenos
committed
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
Bill Wendling
committed
return new RALinScan();