Newer
Older
//===-- MachineFunction.cpp -----------------------------------------------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
Bill Wendling
committed
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
Owen Anderson
committed
#include "llvm/Target/TargetData.h"
Bill Wendling
committed
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Support/raw_ostream.h"
namespace {
Nick Lewycky
committed
struct Printer : public MachineFunctionPass {
raw_ostream &OS;
Printer(raw_ostream &os, const std::string &banner)
: MachineFunctionPass(&ID), OS(os), Banner(banner) {}
const char *getPassName() const { return "MachineFunction Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
bool runOnMachineFunction(MachineFunction &MF) {
MF.print(OS);
}
/// Returns a newly-created MachineFunction Printer pass. The default banner is
/// empty.
///
FunctionPass *llvm::createMachineFunctionPrinterPass(raw_ostream &OS,
return new Printer(OS, Banner);
//===---------------------------------------------------------------------===//
// MachineFunction implementation
//===---------------------------------------------------------------------===//
// Out of line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() {}
void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
Tanya Lattner
committed
}
MachineFunction::MachineFunction(Function *F,
Chris Lattner
committed
const TargetMachine &TM)
Matthijs Kooijman
committed
if (TM.getRegisterInfo())
RegInfo = new (Allocator.Allocate<MachineRegisterInfo>())
MachineRegisterInfo(*TM.getRegisterInfo());
else
RegInfo = 0;
FrameInfo = new (Allocator.Allocate<MachineFrameInfo>())
MachineFrameInfo(*TM.getFrameInfo());
ConstantPool = new (Allocator.Allocate<MachineConstantPool>())
MachineConstantPool(TM.getTargetData());
Bill Wendling
committed
Alignment = TM.getTargetLowering()->getFunctionAlignment(F);
Bill Wendling
committed
// Set up jump table.
const TargetData &TD = *TM.getTargetData();
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
unsigned TyAlignment = IsPic ?
TD.getABITypeAlignment(Type::getInt32Ty(F->getContext()))
Bill Wendling
committed
: TD.getPointerABIAlignment();
JumpTableInfo = new (Allocator.Allocate<MachineJumpTableInfo>())
Bill Wendling
committed
MachineJumpTableInfo(EntrySize, TyAlignment);
MachineFunction::~MachineFunction() {
BasicBlocks.clear();
InstructionRecycler.clear(Allocator);
BasicBlockRecycler.clear(Allocator);
Bill Wendling
committed
if (RegInfo) {
RegInfo->~MachineRegisterInfo();
Allocator.Deallocate(RegInfo);
}
Bill Wendling
committed
MFInfo->~MachineFunctionInfo();
Allocator.Deallocate(MFInfo);
}
FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo);
ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool);
JumpTableInfo->~MachineJumpTableInfo(); Allocator.Deallocate(JumpTableInfo);
/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
/// recomputes them. This guarantees that the MBB numbers are sequential,
/// dense, and match the ordering of the blocks within the function. If a
/// specific MachineBasicBlock is specified, only that block and those after
/// it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == 0)
MBBI = begin();
else
MBBI = MBB;
// Figure out the block number this should have.
unsigned BlockNo = 0;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = 0;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
/// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
/// of `new MachineInstr'.
///
MachineInstr *
MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID,
DebugLoc DL, bool NoImp) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(TID, DL, NoImp);
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
}
/// CloneMachineInstr - Create a new MachineInstr which is a copy of the
/// 'Orig' instruction, identical in all ways except the the instruction
/// has no parent, prev, or next.
///
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, *Orig);
}
/// DeleteMachineInstr - Delete the given MachineInstr.
///
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
MI->~MachineInstr();
InstructionRecycler.Deallocate(Allocator, MI);
}
/// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
/// instead of `new MachineBasicBlock'.
///
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
MachineBasicBlock(*this, bb);
}
/// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
///
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
assert(MBB->getParent() == this && "MBB parent mismatch!");
MBB->~MachineBasicBlock();
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const Value *v, unsigned f,
int64_t o, uint64_t s,
unsigned base_alignment) {
return new (Allocator.Allocate<MachineMemOperand>())
MachineMemOperand(v, f, o, s, base_alignment);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size) {
return new (Allocator.Allocate<MachineMemOperand>())
MachineMemOperand(MMO->getValue(), MMO->getFlags(),
int64_t(uint64_t(MMO->getOffset()) +
uint64_t(Offset)),
Size, MMO->getBaseAlignment());
}
MachineInstr::mmo_iterator
MachineFunction::allocateMemRefsArray(unsigned long Num) {
return Allocator.Allocate<MachineMemOperand *>(Num);
}
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isLoad())
++Num;
// Allocate a new array and populate it with the load information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isLoad()) {
if (!(*I)->isStore())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the store flag.
MachineMemOperand *JustLoad =
getMachineMemOperand((*I)->getValue(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getOffset(), (*I)->getSize(),
(*I)->getBaseAlignment());
Result[Index] = JustLoad;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isStore())
++Num;
// Allocate a new array and populate it with the store information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isStore()) {
if (!(*I)->isLoad())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the load flag.
MachineMemOperand *JustStore =
getMachineMemOperand((*I)->getValue(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getOffset(), (*I)->getSize(),
(*I)->getBaseAlignment());
Result[Index] = JustStore;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
void MachineFunction::dump() const {
void MachineFunction::print(raw_ostream &OS) const {
OS << "# Machine code for function " << Fn->getName() << ":\n";
Chris Lattner
committed
// Print Frame Information
FrameInfo->print(*this, OS);
// Print JumpTable Information
JumpTableInfo->print(OS);
ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
Matthijs Kooijman
committed
if (RegInfo && !RegInfo->livein_empty()) {
for (MachineRegisterInfo::livein_iterator
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
OS << "%" << TRI->getName(I->first);
OS << " in reg%" << I->second;
if (llvm::next(I) != E)
OS << '\n';
Matthijs Kooijman
committed
if (RegInfo && !RegInfo->liveout_empty()) {
for (MachineRegisterInfo::liveout_iterator
I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){
if (llvm::next(I) != E)
OS << '\n';
for (const_iterator BB = begin(), E = end(); BB != E; ++BB) {
OS << '\n';
OS << "\n# End machine code for function " << Fn->getName() << ".\n\n";
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const MachineFunction *F) {
return "CFG for '" + F->getFunction()->getNameStr() + "' function";
std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
if (isSimple () && Node->getBasicBlock() &&
!Node->getBasicBlock()->getName().empty())
return Node->getBasicBlock()->getNameStr() + ":";
std::string OutStr;
{
raw_string_ostream OSS(OutStr);
OSS << Node->getNumber() << ':';
else
Node->print(OSS);
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
}
void MachineFunction::viewCFG() const
{
ViewGraph(this, "mf" + getFunction()->getNameStr());
errs() << "SelectionDAG::viewGraph is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getFunction()->getNameStr(), true);
#else
errs() << "SelectionDAG::viewGraph is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
/// addLiveIn - Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
unsigned MachineFunction::addLiveIn(unsigned PReg,
const TargetRegisterClass *RC) {
assert(RC->contains(PReg) && "Not the correct regclass!");
unsigned VReg = getRegInfo().createVirtualRegister(RC);
getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
/// getDILocation - Get the DILocation for a given DebugLoc object.
DILocation MachineFunction::getDILocation(DebugLoc DL) const {
unsigned Idx = DL.getIndex();
Bill Wendling
committed
assert(Idx < DebugLocInfo.DebugLocations.size() &&
"Invalid index into debug locations!");
return DILocation(DebugLocInfo.DebugLocations[Idx]);
Bill Wendling
committed
}
Chris Lattner
committed
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
Chris Lattner
committed
//===----------------------------------------------------------------------===//
/// CreateFixedObject - Create a new object at a fixed location on the stack.
/// All fixed objects should be created before other objects are created for
/// efficiency. By default, fixed objects are immutable. This returns an
/// index with a negative value.
///
int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable,
isSS));
return -++NumFixedObjects;
}
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
BitVector
MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
assert(MBB && "MBB must be valid");
const MachineFunction *MF = MBB->getParent();
assert(MF && "MBB must be part of a MachineFunction");
const TargetMachine &TM = MF->getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
BitVector BV(TRI->getNumRegs());
// Before CSI is calculated, no registers are considered pristine. They can be
// freely used and PEI will make sure they are saved.
if (!isCalleeSavedInfoValid())
return BV;
for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR)
BV.set(*CSR);
// The entry MBB always has all CSRs pristine.
if (MBB == &MF->front())
return BV;
// On other MBBs the saved CSRs are not pristine.
const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo();
for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
E = CSI.end(); I != E; ++I)
BV.reset(I->getReg());
return BV;
}
void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
Matthijs Kooijman
committed
const TargetFrameInfo *FI = MF.getTarget().getFrameInfo();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
Chris Lattner
committed
for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
const StackObject &SO = Objects[i];
OS << " fi#" << (int)(i-NumFixedObjects) << ": ";
if (SO.Size == ~0ULL) {
OS << "dead\n";
continue;
}
Chris Lattner
committed
if (SO.Size == 0)
OS << "variable sized";
else
OS << "size=" << SO.Size;
OS << ", align=" << SO.Alignment;
Chris Lattner
committed
if (i < NumFixedObjects)
Chris Lattner
committed
if (i < NumFixedObjects || SO.SPOffset != -1) {
if (Off > 0)
else if (Off < 0)
Chris Lattner
committed
OS << "]";
}
OS << "\n";
}
}
void MachineFrameInfo::dump(const MachineFunction &MF) const {
}
Chris Lattner
committed
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// getJumpTableIndex - Create a new jump table entry in the jump table info
/// or return an existing one.
///
unsigned MachineJumpTableInfo::getJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
/// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update
/// the jump tables to branch to New instead.
bool
MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
ReplaceMBBInJumpTable(i, Old, New);
return MadeChange;
}
/// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update
/// the jump table to branch to New instead.
bool
MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
MachineJumpTableEntry &JTE = JumpTables[Idx];
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
if (JTE.MBBs[j] == Old) {
JTE.MBBs[j] = New;
MadeChange = true;
}
return MadeChange;
}
void MachineJumpTableInfo::print(raw_ostream &OS) const {
if (JumpTables.empty()) return;
OS << "Jump Tables:\n";
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << " jt#" << i << ": ";
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
}
}
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
Evan Cheng
committed
const Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
Evan Cheng
committed
return Val.ConstVal->getType();
}
unsigned MachineConstantPoolEntry::getRelocationInfo() const {
if (isMachineConstantPoolEntry())
return Val.ConstVal->getRelocationInfo();
}
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
delete Constants[i].Val.MachineCPVal;
}
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/// CanShareConstantPoolEntry - Test whether the given two constants
/// can be allocated the same constant pool entry.
static bool CanShareConstantPoolEntry(Constant *A, Constant *B,
const TargetData *TD) {
// Handle the trivial case quickly.
if (A == B) return true;
// If they have the same type but weren't the same constant, quickly
// reject them.
if (A->getType() == B->getType()) return false;
// For now, only support constants with the same size.
if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType()))
return false;
// If a floating-point value and an integer value have the same encoding,
// they can share a constant-pool entry.
if (ConstantFP *AFP = dyn_cast<ConstantFP>(A))
if (ConstantInt *BI = dyn_cast<ConstantInt>(B))
return AFP->getValueAPF().bitcastToAPInt() == BI->getValue();
if (ConstantFP *BFP = dyn_cast<ConstantFP>(B))
if (ConstantInt *AI = dyn_cast<ConstantInt>(A))
return BFP->getValueAPF().bitcastToAPInt() == AI->getValue();
// Two vectors can share an entry if each pair of corresponding
// elements could.
if (ConstantVector *AV = dyn_cast<ConstantVector>(A))
if (ConstantVector *BV = dyn_cast<ConstantVector>(B)) {
if (AV->getType()->getNumElements() != BV->getType()->getNumElements())
return false;
for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i)
if (!CanShareConstantPoolEntry(AV->getOperand(i),
BV->getOperand(i), TD))
return false;
return true;
}
// TODO: Handle other cases.
return false;
}
/// getConstantPoolIndex - Create a new entry in the constant pool or return
/// an existing one. User must specify the log2 of the minimum required
/// alignment for the object.
///
unsigned MachineConstantPool::getConstantPoolIndex(Constant *C,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (!Constants[i].isMachineConstantPoolEntry() &&
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) {
if ((unsigned)Constants[i].getAlignment() < Alignment)
Constants[i].Alignment = Alignment;
return i;
Evan Cheng
committed
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1)
return (unsigned)Idx;
Evan Cheng
committed
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
return Constants.size()-1;
}
void MachineConstantPool::print(raw_ostream &OS) const {
if (Constants.empty()) return;
OS << "Constant Pool:\n";
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
OS << *(Value*)Constants[i].Val.ConstVal;
OS << ", align=" << Constants[i].getAlignment();
OS << "\n";
}