Newer
Older
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
Chris Lattner
committed
#include <algorithm>
Statistic<> NumLinear ("reassociate","Number of insts linearized");
Statistic<> NumChanged("reassociate","Number of insts reassociated");
Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Statistic<> NumFactor ("reassociate","Number of multiplies factored");
Chris Lattner
committed
struct ValueEntry {
unsigned Rank;
Value *Op;
ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
};
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
}
Chris Lattner
committed
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType();
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
<< "," << Ops[i].Rank;
}
namespace {
class Reassociate : public FunctionPass {
std::map<Value*, unsigned> ValueRankMap;
Chris Lattner
committed
bool MadeChange;
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
unsigned getRank(Value *V);
Chris Lattner
committed
void RewriteExprTree(BinaryOperator *I, unsigned Idx,
std::vector<ValueEntry> &Ops);
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattner
committed
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattner
committed
void ReassociateBB(BasicBlock *BB);
void RemoveDeadBinaryOp(Value *V);
// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
void Reassociate::RemoveDeadBinaryOp(Value *V) {
BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
if (!BOp || !BOp->use_empty()) return;
Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
RemoveDeadBinaryOp(LHS);
RemoveDeadBinaryOp(RHS);
}
static bool isUnmovableInstruction(Instruction *I) {
if (I->getOpcode() == Instruction::PHI ||
I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Load ||
I->getOpcode() == Instruction::Malloc ||
I->getOpcode() == Instruction::Invoke ||
I->getOpcode() == Instruction::Call ||
I->getOpcode() == Instruction::Div ||
I->getOpcode() == Instruction::Rem)
return true;
return false;
}
Chris Lattner
committed
unsigned i = 2;
// Assign distinct ranks to function arguments
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
ValueRankMap[I] = ++i;
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
E = RPOT.end(); I != E; ++I) {
BasicBlock *BB = *I;
unsigned BBRank = RankMap[BB] = ++i << 16;
// Walk the basic block, adding precomputed ranks for any instructions that
// we cannot move. This ensures that the ranks for these instructions are
// all different in the block.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (isUnmovableInstruction(I))
ValueRankMap[I] = ++BBRank;
}
}
unsigned Reassociate::getRank(Value *V) {
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
unsigned &CachedRank = ValueRankMap[I];
if (CachedRank) return CachedRank; // Rank already known?
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
// we can reassociate expressions for code motion! Since we do not recurse
// for PHI nodes, we cannot have infinite recursion here, because there
// cannot be loops in the value graph that do not go through PHI nodes.
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
for (unsigned i = 0, e = I->getNumOperands();
i != e && Rank != MaxRank; ++i)
Rank = std::max(Rank, getRank(I->getOperand(i)));
// If this is a not or neg instruction, do not count it for rank. This
// assures us that X and ~X will have the same rank.
if (!I->getType()->isIntegral() ||
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
++Rank;
//DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
//<< Rank << "\n");
return CachedRank = Rank;
Chris Lattner
committed
/// isReassociableOp - Return true if V is an instruction of the specified
/// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
if (V->hasOneUse() && isa<Instruction>(V) &&
cast<Instruction>(V)->getOpcode() == Opcode)
return cast<BinaryOperator>(V);
return 0;
}
/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static Instruction *LowerNegateToMultiply(Instruction *Neg) {
Constant *Cst;
if (Neg->getType()->isFloatingPoint())
Cst = ConstantFP::get(Neg->getType(), -1);
else
Cst = ConstantInt::getAllOnesValue(Neg->getType());
std::string NegName = Neg->getName(); Neg->setName("");
Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
Neg);
Neg->replaceAllUsesWith(Res);
Neg->eraseFromParent();
return Res;
}
Chris Lattner
committed
// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
// Note that if D is also part of the expression tree that we recurse to
// linearize it as well. Besides that case, this does not recurse into A,B, or
// C.
void Reassociate::LinearizeExpr(BinaryOperator *I) {
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattner
committed
isReassociableOp(RHS, I->getOpcode()) &&
"Not an expression that needs linearization?");
DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
// Move the RHS instruction to live immediately before I, avoiding breaking
// dominator properties.
RHS->moveBefore(I);
Chris Lattner
committed
// Move operands around to do the linearization.
I->setOperand(1, RHS->getOperand(0));
RHS->setOperand(0, LHS);
I->setOperand(0, RHS);
Chris Lattner
committed
++NumLinear;
MadeChange = true;
DEBUG(std::cerr << "Linearized: " << *I);
Chris Lattner
committed
// If D is part of this expression tree, tail recurse.
if (isReassociableOp(I->getOperand(1), I->getOpcode()))
LinearizeExpr(I);
}
Chris Lattner
committed
/// LinearizeExprTree - Given an associative binary expression tree, traverse
/// all of the uses putting it into canonical form. This forces a left-linear
/// form of the the expression (((a+b)+c)+d), and collects information about the
/// rank of the non-tree operands.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
unsigned Opcode = I->getOpcode();
// First step, linearize the expression if it is in ((A+B)+(C+D)) form.
BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
// If this is a multiply expression tree and it contains internal negations,
// transform them into multiplies by -1 so they can be reassociated.
if (I->getOpcode() == Instruction::Mul) {
if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
LHSBO = isReassociableOp(LHS, Opcode);
}
if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
RHSBO = isReassociableOp(RHS, Opcode);
}
}
Chris Lattner
committed
if (!LHSBO) {
if (!RHSBO) {
// Neither the LHS or RHS as part of the tree, thus this is a leaf. As
// such, just remember these operands and their rank.
Ops.push_back(ValueEntry(getRank(LHS), LHS));
Ops.push_back(ValueEntry(getRank(RHS), RHS));
return;
} else {
// Turn X+(Y+Z) -> (Y+Z)+X
std::swap(LHSBO, RHSBO);
std::swap(LHS, RHS);
bool Success = !I->swapOperands();
assert(Success && "swapOperands failed");
MadeChange = true;
}
} else if (RHSBO) {
// Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
// part of the expression tree.
LinearizeExpr(I);
LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
RHS = I->getOperand(1);
RHSBO = 0;
Chris Lattner
committed
// Okay, now we know that the LHS is a nested expression and that the RHS is
// not. Perform reassociation.
assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner
committed
// Move LHS right before I to make sure that the tree expression dominates all
// values.
LHSBO->moveBefore(I);
Chris Lattner
committed
// Linearize the expression tree on the LHS.
LinearizeExprTree(LHSBO, Ops);
// Remember the RHS operand and its rank.
Ops.push_back(ValueEntry(getRank(RHS), RHS));
}
// RewriteExprTree - Now that the operands for this expression tree are
// linearized and optimized, emit them in-order. This function is written to be
// tail recursive.
void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
std::vector<ValueEntry> &Ops) {
if (i+2 == Ops.size()) {
if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) {
Value *OldLHS = I->getOperand(0);
Chris Lattner
committed
DEBUG(std::cerr << "RA: " << *I);
I->setOperand(0, Ops[i].Op);
I->setOperand(1, Ops[i+1].Op);
DEBUG(std::cerr << "TO: " << *I);
MadeChange = true;
++NumChanged;
// If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
// delete the extra, now dead, nodes.
RemoveDeadBinaryOp(OldLHS);
Chris Lattner
committed
}
return;
}
assert(i+2 < Ops.size() && "Ops index out of range!");
if (I->getOperand(1) != Ops[i].Op) {
DEBUG(std::cerr << "RA: " << *I);
I->setOperand(1, Ops[i].Op);
DEBUG(std::cerr << "TO: " << *I);
MadeChange = true;
++NumChanged;
}
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
assert(LHS->getOpcode() == I->getOpcode() &&
"Improper expression tree!");
// Compactify the tree instructions together with each other to guarantee
// that the expression tree is dominated by all of Ops.
LHS->moveBefore(I);
RewriteExprTree(LHS, i+1, Ops);
Chris Lattner
committed
// NegateValue - Insert instructions before the instruction pointed to by BI,
// that computes the negative version of the value specified. The negative
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, Instruction *BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
// this means that we turn this:
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unnecessary negation instructions...
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
// Push the negates through the add.
I->setOperand(0, NegateValue(I->getOperand(0), BI));
I->setOperand(1, NegateValue(I->getOperand(1), BI));
// We must move the add instruction here, because the neg instructions do
// not dominate the old add instruction in general. By moving it, we are
// assured that the neg instructions we just inserted dominate the
// instruction we are about to insert after them.
I->moveBefore(BI);
I->setName(I->getName()+".neg");
return I;
}
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
//
return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static Instruction *BreakUpSubtract(Instruction *Sub) {
// Don't bother to break this up unless either the LHS is an associable add or
// if this is only used by one.
if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
!isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
!(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
return 0;
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
//
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
//
std::string Name = Sub->getName();
Sub->setName("");
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Instruction *New =
BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
// Everyone now refers to the add instruction.
Sub->replaceAllUsesWith(New);
Sub->eraseFromParent();
DEBUG(std::cerr << "Negated: " << *New);
return New;
}
/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
/// by one, change this into a multiply by a constant to assist with further
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl) {
if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
!(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
return 0;
Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
std::string Name = Shl->getName(); Shl->setName("");
Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
Name, Shl);
Shl->replaceAllUsesWith(Mul);
Shl->eraseFromParent();
return Mul;
}
// Scan backwards and forwards among values with the same rank as element i to
// see if X exists. If X does not exist, return i.
static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
Value *X) {
unsigned XRank = Ops[i].Rank;
unsigned e = Ops.size();
for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
if (Ops[j].Op == X)
return j;
// Scan backwards
for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
if (Ops[j].Op == X)
return j;
return i;
}
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.back();
Ops.pop_back();
Value *V2 = EmitAddTreeOfValues(I, Ops);
return BinaryOperator::createAdd(V2, V1, "tmp", I);
}
/// RemoveFactorFromExpression - If V is an expression tree that is a
/// multiplication sequence, and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
if (!BO) return 0;
std::vector<ValueEntry> Factors;
LinearizeExprTree(BO, Factors);
bool FoundFactor = false;
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Factors[i].Op == Factor) {
FoundFactor = true;
Factors.erase(Factors.begin()+i);
break;
}
if (!FoundFactor) return 0;
if (Factors.size() == 1) return Factors[0].Op;
RewriteExprTree(BO, 0, Factors);
return BO;
}
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
bool IterateOptimization = false;
if (Ops.size() == 1) return Ops[0].Op;
unsigned Opcode = I->getOpcode();
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
return OptimizeExpression(I, Ops);
}
// Check for destructive annihilation due to a constant being used.
if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
switch (Opcode) {
default: break;
case Instruction::And:
if (CstVal->isNullValue()) { // ... & 0 -> 0
++NumAnnihil;
return CstVal;
} else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
Ops.pop_back();
}
break;
case Instruction::Mul:
if (CstVal->isNullValue()) { // ... * 0 -> 0
++NumAnnihil;
return CstVal;
} else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
Ops.pop_back(); // ... * 1 -> ...
}
break;
case Instruction::Or:
if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
++NumAnnihil;
return CstVal;
}
// FALLTHROUGH!
case Instruction::Add:
case Instruction::Xor:
if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
Ops.pop_back();
break;
}
if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation do to identities between elements in the
// argument list here.
switch (Opcode) {
default: break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
// If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// First, check for X and ~X in the operand list.
assert(i < Ops.size());
if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX != i) {
if (Opcode == Instruction::And) { // ...&X&~X = 0
++NumAnnihil;
return Constant::getNullValue(X->getType());
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
++NumAnnihil;
return ConstantIntegral::getAllOnesValue(X->getType());
}
}
}
// Next, check for duplicate pairs of values, which we assume are next to
// each other, due to our sorting criteria.
assert(i < Ops.size());
if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
if (Opcode == Instruction::And || Opcode == Instruction::Or) {
// Drop duplicate values.
Ops.erase(Ops.begin()+i);
--i; --e;
IterateOptimization = true;
++NumAnnihil;
} else {
assert(Opcode == Instruction::Xor);
if (e == 2) {
++NumAnnihil;
return Constant::getNullValue(Ops[0].Op->getType());
// ... X^X -> ...
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
i -= 1; e -= 2;
IterateOptimization = true;
++NumAnnihil;
}
}
}
break;
case Instruction::Add:
// Scan the operand lists looking for X and -X pairs. If we find any, we
// can simplify the expression. X+-X == 0.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
assert(i < Ops.size());
// Check for X and -X in the operand list.
if (BinaryOperator::isNeg(Ops[i].Op)) {
Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX != i) {
// Remove X and -X from the operand list.
if (Ops.size() == 2) {
++NumAnnihil;
return Constant::getNullValue(X->getType());
} else {
Ops.erase(Ops.begin()+i);
if (i < FoundX)
--FoundX;
else
--i; // Need to back up an extra one.
Ops.erase(Ops.begin()+FoundX);
IterateOptimization = true;
++NumAnnihil;
--i; // Revisit element.
e -= 2; // Removed two elements.
}
}
}
}
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
// Scan the operand list, checking to see if there are any common factors
// between operands. Consider something like A*A+A*B*C+D. We would like to
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
// To efficiently find this, we count the number of times a factor occurs
// for any ADD operands that are MULs.
std::map<Value*, unsigned> FactorOccurrences;
unsigned MaxOcc = 0;
Value *MaxOccVal = 0;
if (!I->getType()->isFloatingPoint()) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) {
// Compute all of the factors of this added value.
std::vector<ValueEntry> Factors;
LinearizeExprTree(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
if (Factors.size() == 2) {
unsigned Occ = ++FactorOccurrences[Factors[0].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; }
if (Factors[0].Op != Factors[1].Op) { // Don't double count A*A.
Occ = ++FactorOccurrences[Factors[1].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; }
}
} else {
std::set<Value*> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Duplicates.insert(Factors[i].Op).second) {
unsigned Occ = ++FactorOccurrences[Factors[i].Op];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; }
}
}
}
}
}
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
<< *MaxOccVal << "\n");
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
std::vector<Value*> NewMulOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
NewMulOps.push_back(V);
Ops.erase(Ops.begin()+i);
--i; --e;
}
}
// No need for extra uses anymore.
delete DummyInst;
Value *V = EmitAddTreeOfValues(I, NewMulOps);
// FIXME: Must optimize V now, to handle this case:
// A*A*B + A*A*C -> A*(A*B+A*C) -> A*(A*(B+C))
V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
++NumFactor;
if (Ops.size() == 0)
return V;
// Add the new value to the list of things being added.
Ops.insert(Ops.begin(), ValueEntry(getRank(V), V));
// Rewrite the tree so that there is now a use of V.
RewriteExprTree(I, 0, Ops);
return OptimizeExpression(I, Ops);
}
break;
//case Instruction::Mul:
}
return OptimizeExpression(I, Ops);
return 0;
/// ReassociateBB - Inspect all of the instructions in this basic block,
/// reassociating them as we go.
Chris Lattner
committed
void Reassociate::ReassociateBB(BasicBlock *BB) {
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
Instruction *BI = BBI++;
if (BI->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(BI->getOperand(1)))
if (Instruction *NI = ConvertShiftToMul(BI)) {
MadeChange = true;
BI = NI;
}
// Reject cases where it is pointless to do this.
if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
continue; // Floating point ops are not associative.
// If this is a subtract instruction which is not already in negate form,
// see if we can convert it to X+-Y.
if (BI->getOpcode() == Instruction::Sub) {
if (!BinaryOperator::isNeg(BI)) {
if (Instruction *NI = BreakUpSubtract(BI)) {
MadeChange = true;
BI = NI;
}
} else {
// Otherwise, this is a negation. See if the operand is a multiply tree
// and if this is not an inner node of a multiply tree.
if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
(!BI->hasOneUse() ||
!isReassociableOp(BI->use_back(), Instruction::Mul))) {
BI = LowerNegateToMultiply(BI);
MadeChange = true;
}
}
Chris Lattner
committed
// If this instruction is a commutative binary operator, process it.
if (!BI->isAssociative()) continue;
BinaryOperator *I = cast<BinaryOperator>(BI);
Chris Lattner
committed
// If this is an interior node of a reassociable tree, ignore it until we
// get to the root of the tree, to avoid N^2 analysis.
if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
continue;
Chris Lattner
committed
// If this is an add tree that is used by a sub instruction, ignore it
// until we process the subtract.
if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
continue;
// First, walk the expression tree, linearizing the tree, collecting
Chris Lattner
committed
std::vector<ValueEntry> Ops;
LinearizeExprTree(I, Ops);
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
Chris Lattner
committed
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
// stable_sort so that values with equal ranks will have their relative
// positions maintained (and so the compiler is deterministic). Note that
// this sorts so that the highest ranking values end up at the beginning of
// the vector.
std::stable_sort(Ops.begin(), Ops.end());
// OptimizeExpression - Now that we have the expression tree in a convenient
// sorted form, optimize it globally if possible.
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
I->replaceAllUsesWith(V);
RemoveDeadBinaryOp(I);
continue;
}
Chris Lattner
committed
// We want to sink immediates as deeply as possible except in the case where
// this is a multiply tree used only by an add, and the immediate is a -1.
// In this case we reassociate to put the negation on the outside so that we
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
isa<ConstantInt>(Ops.back().Op) &&
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Ops.insert(Ops.begin(), Ops.back());
Ops.pop_back();
}
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
Chris Lattner
committed
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
I->replaceAllUsesWith(Ops[0].Op);
RemoveDeadBinaryOp(I);
Chris Lattner
committed
} else {
// Now that we ordered and optimized the expressions, splat them back into
// the expression tree, removing any unneeded nodes.
RewriteExprTree(I, 0, Ops);
// Recalculate the rank map for F
BuildRankMap(F);
Chris Lattner
committed
MadeChange = false;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner
committed
ReassociateBB(FI);
// We are done with the rank map...
RankMap.clear();
ValueRankMap.clear();
Chris Lattner
committed
return MadeChange;