Newer
Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
Alkis Evlogimenos
committed
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
Alkis Evlogimenos
committed
using namespace llvm;
namespace {
RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
Alkis Evlogimenos
committed
("liveintervals", "Number of original intervals");
("liveintervals", "Number of intervals after coalescing");
("liveintervals", "Number of interval joins performed");
("liveintervals", "Number of identity moves eliminated after coalescing");
("liveintervals", "Number of loads/stores folded into instructions");
cl::desc("Coallesce copies (default=true)"),
Alkis Evlogimenos
committed
Chris Lattner
committed
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
Alkis Evlogimenos
committed
}
Chris Lattner
committed
void LiveIntervals::releaseMemory() {
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
}
static bool isZeroLengthInterval(LiveInterval *li) {
for (LiveInterval::Ranges::const_iterator
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
return false;
return true;
}
Alkis Evlogimenos
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
lv_ = &getAnalysis<LiveVariables>();
allocatableRegs_ = mri_->getAllocatableSet(fn);
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
// If this function has any live ins, insert a dummy instruction at the
// beginning of the function that we will pretend "defines" the values. This
// is to make the interval analysis simpler by providing a number.
if (fn.livein_begin() != fn.livein_end()) {
unsigned FirstLiveIn = fn.livein_begin()->first;
// Find a reg class that contains this live in.
const TargetRegisterClass *RC = 0;
for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
E = mri_->regclass_end(); RCI != E; ++RCI)
if ((*RCI)->contains(FirstLiveIn)) {
RC = *RCI;
break;
}
MachineInstr *OldFirstMI = fn.begin()->begin();
mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
FirstLiveIn, FirstLiveIn, RC);
assert(OldFirstMI != fn.begin()->begin() &&
"copyRetToReg didn't insert anything!");
}
// Number MachineInstrs and MachineBasicBlocks.
// Initialize MBB indexes to a sentinal.
MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
unsigned MIIndex = 0;
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
MBB != E; ++MBB) {
// Set the MBB2IdxMap entry for this MBB.
MBB2IdxMap[MBB->getNumber()] = MIIndex;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(I);
MIIndex += InstrSlots::NUM;
}
Alkis Evlogimenos
committed
// Note intervals due to live-in values.
if (fn.livein_begin() != fn.livein_end()) {
MachineBasicBlock *Entry = fn.begin();
for (MachineFunction::livein_iterator I = fn.livein_begin(),
E = fn.livein_end(); I != E; ++I) {
handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
Chris Lattner
committed
getOrCreateInterval(I->first), 0);
for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
Chris Lattner
committed
getOrCreateInterval(*AS), 0);
Alkis Evlogimenos
committed
DEBUG(std::cerr << "********** INTERVALS **********\n";
for (iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
});
// Join (coallesce) intervals if requested.
if (EnableJoining) joinIntervals();
numIntervalsAfter += getNumIntervals();
// perform a final pass over the instructions and compute spill
// weights, coalesce virtual registers and remove identity moves.
const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
// if the move will be an identity move delete it
unsigned srcReg, dstReg, RegRep;
if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
(RegRep = rep(srcReg)) == rep(dstReg)) {
// remove from def list
Chris Lattner
committed
RemoveMachineInstrFromMaps(mii);
mii = mbbi->erase(mii);
++numPeep;
}
else {
for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
const MachineOperand &mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg() &&
MRegisterInfo::isVirtualRegister(mop.getReg())) {
// replace register with representative register
unsigned reg = rep(mop.getReg());
mii->getOperand(i).setReg(reg);
LiveInterval &RegInt = getInterval(reg);
RegInt.weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
}
}
++mii;
}
}
}
for (iterator I = begin(), E = end(); I != E; ++I) {
LiveInterval &LI = I->second;
if (MRegisterInfo::isVirtualRegister(LI.reg)) {
// If the live interval length is essentially zero, i.e. in every live
// range the use follows def immediately, it doesn't make sense to spill
// it and hope it will be easier to allocate for this li.
if (isZeroLengthInterval(&LI))
// Divide the weight of the interval by its size. This encourages
// spilling of intervals that are large and have few uses, and
// discourages spilling of small intervals with many uses.
unsigned Size = 0;
for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
Size += II->end - II->start;
LI.weight /= Size;
}
Alkis Evlogimenos
committed
}
void LiveIntervals::print(std::ostream &O, const Module* ) const {
O << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
}
O << "********** MACHINEINSTRS **********\n";
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
Chris Lattner
committed
O << getInstructionIndex(mii) << '\t' << *mii;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/// CreateNewLiveInterval - Create a new live interval with the given live
/// ranges. The new live interval will have an infinite spill weight.
LiveInterval&
LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
const std::vector<LiveRange> &LRs) {
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
// Create a new virtual register for the spill interval.
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
// Replace the old virtual registers in the machine operands with the shiny
// new one.
for (std::vector<LiveRange>::const_iterator
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
unsigned Index = getBaseIndex(I->start);
unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
for (; Index != End; Index += InstrSlots::NUM) {
// Skip deleted instructions
while (Index != End && !getInstructionFromIndex(Index))
Index += InstrSlots::NUM;
if (Index == End) break;
MachineInstr *MI = getInstructionFromIndex(Index);
for (unsigned J = 0; J != MI->getNumOperands(); ++J) {
MachineOperand &MOp = MI->getOperand(J);
if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
MOp.setReg(NewVReg);
}
}
}
LiveInterval &NewLI = getOrCreateInterval(NewVReg);
// The spill weight is now infinity as it cannot be spilled again
NewLI.weight = float(HUGE_VAL);
for (std::vector<LiveRange>::const_iterator
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
DEBUG(std::cerr << " Adding live range " << *I << " to new interval\n");
NewLI.addRange(*I);
}
DEBUG(std::cerr << "Created new live interval " << NewLI << "\n");
return NewLI;
}
std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
// since this is called after the analysis is done we don't know if
// LiveVariables is available
lv_ = getAnalysisToUpdate<LiveVariables>();
std::vector<LiveInterval*> added;
"attempt to spill already spilled interval!");
Chris Lattner
committed
DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: ";
li.print(std::cerr, mri_); std::cerr << '\n');
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
for (LiveInterval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
unsigned index = getBaseIndex(i->start);
unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
for (; index != end; index += InstrSlots::NUM) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
index += InstrSlots::NUM;
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
Chris Lattner
committed
RestartInstruction:
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& mop = MI->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
Chris Lattner
committed
if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
// Attempt to fold the memory reference into the instruction. If we
// can do this, we don't need to insert spill code.
if (lv_)
lv_->instructionChanged(MI, fmi);
MachineBasicBlock &MBB = *MI->getParent();
vrm.virtFolded(li.reg, MI, i, fmi);
mi2iMap_.erase(MI);
i2miMap_[index/InstrSlots::NUM] = fmi;
mi2iMap_[fmi] = index;
MI = MBB.insert(MBB.erase(MI), fmi);
Chris Lattner
committed
// Folding the load/store can completely change the instruction in
// unpredictable ways, rescan it from the beginning.
Chris Lattner
committed
goto RestartInstruction;
Chris Lattner
committed
} else {
Chris Lattner
committed
// Create a new virtual register for the spill interval.
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
// Scan all of the operands of this instruction rewriting operands
// to use NewVReg instead of li.reg as appropriate. We do this for
// two reasons:
Chris Lattner
committed
// 1. If the instr reads the same spilled vreg multiple times, we
// want to reuse the NewVReg.
// 2. If the instr is a two-addr instruction, we are required to
// keep the src/dst regs pinned.
//
// Keep track of whether we replace a use and/or def so that we can
// create the spill interval with the appropriate range.
mop.setReg(NewVReg);
bool HasUse = mop.isUse();
bool HasDef = mop.isDef();
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
if (MI->getOperand(j).isReg() &&
MI->getOperand(j).getReg() == li.reg) {
MI->getOperand(j).setReg(NewVReg);
HasUse |= MI->getOperand(j).isUse();
HasDef |= MI->getOperand(j).isDef();
}
}
// create a new register for this spill
vrm.grow();
Chris Lattner
committed
vrm.assignVirt2StackSlot(NewVReg, slot);
LiveInterval &nI = getOrCreateInterval(NewVReg);
// the spill weight is now infinity as it
// cannot be spilled again
Chris Lattner
committed
if (HasUse) {
LiveRange LR(getLoadIndex(index), getUseIndex(index),
nI.getNextValue(~0U, 0));
DEBUG(std::cerr << " +" << LR);
nI.addRange(LR);
}
if (HasDef) {
LiveRange LR(getDefIndex(index), getStoreIndex(index),
nI.getNextValue(~0U, 0));
DEBUG(std::cerr << " +" << LR);
nI.addRange(LR);
}
// update live variables if it is available
if (lv_)
Chris Lattner
committed
lv_->addVirtualRegisterKilled(NewVReg, MI);
Chris Lattner
committed
DEBUG(std::cerr << "\t\t\t\tadded new interval: ";
nI.print(std::cerr, mri_); std::cerr << '\n');
void LiveIntervals::printRegName(unsigned reg) const {
if (MRegisterInfo::isPhysicalRegister(reg))
std::cerr << mri_->getName(reg);
else
std::cerr << "%reg" << reg;
Alkis Evlogimenos
committed
}
/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
/// two addr elimination.
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
const TargetInstrInfo *TII) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO1 = MI->getOperand(i);
if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
for (unsigned j = i+1; j < e; ++j) {
MachineOperand &MO2 = MI->getOperand(j);
if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
TII->getOperandConstraint(MI->getOpcode(), j,
TargetInstrInfo::TIED_TO) == (int)i)
return true;
}
}
}
return false;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
unsigned MIIdx,
LiveInterval &interval) {
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
if (interval.empty()) {
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(MIIdx);
Chris Lattner
committed
unsigned ValNum;
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
ValNum = interval.getNextValue(~0U, 0);
else
ValNum = interval.getNextValue(defIndex, SrcReg);
assert(ValNum == 0 && "First value in interval is not 0?");
ValNum = 0; // Clue in the optimizer.
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
unsigned killIdx;
if (vi.Kills[0] != mi)
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
else
killIdx = defIndex+1;
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << "\n");
return;
}
}
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
ValNum);
DEBUG(std::cerr << " +" << NewLR);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
if (!MBB->empty()) {
LiveRange LR(getMBBStartIdx(i),
getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
LiveRange LR(getMBBStartIdx(Kill->getParent()),
getUseIndex(getInstructionIndex(Kill))+1,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the
// def-and-use register operand.
if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
unsigned RedefIndex = getDefIndex(MIIdx);
// Delete the initial value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
// Two-address vregs should always only be redefined once. This means
// that at this point, there should be exactly one value number in it.
assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
Chris Lattner
committed
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
unsigned ValNo = interval.getNextValue(0, 0);
interval.setValueNumberInfo(1, interval.getValNumInfo(0));
Chris Lattner
committed
// Value#0 is now defined by the 2-addr instruction.
interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
if (lv_->RegisterDefIsDead(mi, interval.reg))
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
Chris Lattner
committed
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
assert(vi.Kills.size() == 1 &&
"PHI elimination vreg should have one kill, the PHI itself!");
// Remove the old range that we now know has an incorrect number.
MachineInstr *Killer = vi.Kills[0];
unsigned Start = getMBBStartIdx(Killer->getParent());
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
Chris Lattner
committed
DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: ";
interval.print(std::cerr, mri_); std::cerr << "\n");
Chris Lattner
committed
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
// Replace the interval with one of a NEW value number. Note that this
// value number isn't actually defined by an instruction, weird huh? :)
Chris Lattner
committed
LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
Chris Lattner
committed
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
unsigned defIndex = getDefIndex(MIIdx);
Chris Lattner
committed
unsigned ValNum;
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
ValNum = interval.getNextValue(~0U, 0);
else
ValNum = interval.getNextValue(defIndex, SrcReg);
Chris Lattner
committed
getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
unsigned MIIdx,
Chris Lattner
committed
LiveInterval &interval,
unsigned SrcReg) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
unsigned baseIndex = MIIdx;
unsigned start = getDefIndex(baseIndex);
unsigned end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
if (lv_->RegisterDefIsDead(mi, interval.reg)) {
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
Alkis Evlogimenos
committed
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
while (++mi != MBB->end()) {
if (lv_->KillsRegister(mi, interval.reg)) {
DEBUG(std::cerr << " killed");
end = getUseIndex(baseIndex) + 1;
goto exit;
Evan Cheng
committed
} else if (lv_->ModifiesRegister(mi, interval.reg)) {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
// and never used.
Chris Lattner
committed
assert(!SrcReg && "physreg was not killed in defining block!");
end = getDefIndex(start) + 1; // It's dead.
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
Chris Lattner
committed
LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
SrcReg));
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << '\n');
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
unsigned MIIdx,
unsigned reg) {
if (MRegisterInfo::isVirtualRegister(reg))
handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
else if (allocatableRegs_[reg]) {
Chris Lattner
committed
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
SrcReg = 0;
handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
/// computeIntervals - computes the live intervals for virtual
Alkis Evlogimenos
committed
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
Chris Lattner
committed
void LiveIntervals::computeIntervals() {
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
DEBUG(std::cerr << "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
// Track the index of the current machine instr.
unsigned MIIndex = 0;
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
if (IgnoreFirstInstr) {
++MI;
IgnoreFirstInstr = false;
MIIndex += InstrSlots::NUM;
}
for (; MI != miEnd; ++MI) {
DEBUG(std::cerr << MIIndex << "\t" << *MI);
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
// handle register defs - build intervals
if (MO.isRegister() && MO.getReg() && MO.isDef())
handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
MIIndex += InstrSlots::NUM;
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
Chris Lattner
committed
/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy. For example:
///
/// A3 = B0
/// ...
/// B1 = A3 <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
MachineInstr *CopyMI) {
unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
Chris Lattner
committed
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
unsigned BValNo = BLR->ValId;
// Get the location that B is defined at. Two options: either this value has
// an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
if (BValNoDefIdx == ~0U) return false;
assert(BValNoDefIdx == CopyIdx &&
"Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A0 in the example.
LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
unsigned AValNo = AValLR->ValId;
Chris Lattner
committed
// If AValNo is defined as a copy from IntB, we can potentially process this.
Chris Lattner
committed
// Get the instruction that defines this value number.
Chris Lattner
committed
unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
if (!SrcReg) return false; // Not defined by a copy.
Chris Lattner
committed
// If the value number is not defined by a copy instruction, ignore it.
Chris Lattner
committed
// If the source register comes from an interval other than IntB, we can't
// handle this.
if (rep(SrcReg) != IntB.reg) return false;
Chris Lattner
committed
Chris Lattner
committed
// Get the LiveRange in IntB that this value number starts with.
Chris Lattner
committed
unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
Chris Lattner
committed
LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
Chris Lattner
committed
// Make sure that the end of the live range is inside the same block as
// CopyMI.
MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
if (!ValLREndInst ||
ValLREndInst->getParent() != CopyMI->getParent()) return false;
Chris Lattner
committed
// Okay, we now know that ValLR ends in the same block that the CopyMI
// live-range starts. If there are no intervening live ranges between them in
// IntB, we can merge them.
if (ValLR+1 != BLR) return false;
Chris Lattner
committed
DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_));
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'.
Chris Lattner
committed
IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
Chris Lattner
committed
// Okay, we can merge them. We need to insert a new liverange:
// [ValLR.end, BLR.begin) of either value number, then we merge the
// two value numbers.
unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
// If the IntB live range is assigned to a physical register, and if that
// physreg has aliases,
if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
LiveInterval &AliasLI = getInterval(*AS);
AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
Chris Lattner
committed
AliasLI.getNextValue(~0U, 0)));
}
}
Chris Lattner
committed
// Okay, merge "B1" into the same value number as "B0".
if (BValNo != ValLR->ValId)
IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
DEBUG(std::cerr << " result = "; IntB.print(std::cerr, mri_);
std::cerr << "\n");
// Finally, delete the copy instruction.
RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
++numPeep;
return true;
}
Chris Lattner
committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns true
/// if the copy was successfully coallesced away, or if it is never possible
/// to coallesce these this copy, due to register constraints. It returns
/// false if it is not currently possible to coallesce this interval, but
/// it may be possible if other things get coallesced.
bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
unsigned SrcReg, unsigned DstReg) {
DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI);
// Get representative registers.
SrcReg = rep(SrcReg);
DstReg = rep(DstReg);
// If they are already joined we continue.
if (SrcReg == DstReg) {
DEBUG(std::cerr << "\tCopy already coallesced.\n");
return true; // Not coallescable.
}
// If they are both physical registers, we cannot join them.
if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
MRegisterInfo::isPhysicalRegister(DstReg)) {
DEBUG(std::cerr << "\tCan not coallesce physregs.\n");
return true; // Not coallescable.
}
Chris Lattner
committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
// We only join virtual registers with allocatable physical registers.
if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n");
return true; // Not coallescable.
}
if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n");
return true; // Not coallescable.
}
// If they are not of the same register class, we cannot join them.
if (differingRegisterClasses(SrcReg, DstReg)) {
DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n");
return true; // Not coallescable.
}
LiveInterval &SrcInt = getInterval(SrcReg);
LiveInterval &DestInt = getInterval(DstReg);
assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
"Register mapping is horribly broken!");
DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_);
std::cerr << " and "; DestInt.print(std::cerr, mri_);
std::cerr << ": ");
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DestInt to be it. The output "SrcInt" will not have
// been modified, so we can use this information below to update aliases.
if (!JoinIntervals(DestInt, SrcInt)) {
// Coallescing failed.
// If we can eliminate the copy without merging the live ranges, do so now.
if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
return true;
Chris Lattner
committed
// Otherwise, we are unable to join the intervals.
Chris Lattner
committed
DEBUG(std::cerr << "Interference!\n");
return false;
}
bool Swapped = SrcReg == DestInt.reg;
if (Swapped)
std::swap(SrcReg, DstReg);
assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
"LiveInterval::join didn't work right!");
// If we're about to merge live ranges into a physical register live range,
// we have to update any aliased register's live ranges to indicate that they
// have clobbered values for this range.
if (MRegisterInfo::isPhysicalRegister(DstReg)) {
for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
getInterval(*AS).MergeInClobberRanges(SrcInt);
}
Chris Lattner
committed
DEBUG(std::cerr << "\n\t\tJoined. Result = "; DestInt.print(std::cerr, mri_);
std::cerr << "\n");
// If the intervals were swapped by Join, swap them back so that the register
// mapping (in the r2i map) is correct.
if (Swapped) SrcInt.swap(DestInt);
r2iMap_.erase(SrcReg);
r2rMap_[SrcReg] = DstReg;
// Finally, delete the copy instruction.
RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
++numPeep;
Chris Lattner
committed
++numJoins;
return true;
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be. This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve. InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(unsigned VN,
Chris Lattner
committed
SmallVector<std::pair<unsigned,
unsigned>, 16> &ValueNumberInfo,
SmallVector<int, 16> &ThisFromOther,
SmallVector<int, 16> &OtherFromThis,
SmallVector<int, 16> &ThisValNoAssignments,
SmallVector<int, 16> &OtherValNoAssignments,
LiveInterval &ThisLI, LiveInterval &OtherLI) {
// If the VN has already been computed, just return it.
if (ThisValNoAssignments[VN] >= 0)
return ThisValNoAssignments[VN];
Chris Lattner
committed
// assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
// If this val is not a copy from the other val, then it must be a new value
// number in the destination.
int OtherValNo = ThisFromOther[VN];
if (OtherValNo == -1) {
Chris Lattner
committed
ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
}
Chris Lattner
committed
// Otherwise, this *is* a copy from the RHS. If the other side has already
// been computed, return it.
if (OtherValNoAssignments[OtherValNo] >= 0)
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
// Mark this value number as currently being computed, then ask what the
// ultimate value # of the other value is.
ThisValNoAssignments[VN] = -2;
unsigned UltimateVN =
Chris Lattner
committed
ComputeUltimateVN(OtherValNo, ValueNumberInfo,
OtherFromThis, ThisFromOther,
OtherValNoAssignments, ThisValNoAssignments,
OtherLI, ThisLI);
return ThisValNoAssignments[VN] = UltimateVN;
}
Chris Lattner
committed
static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
return std::find(V.begin(), V.end(), Val) != V.end();
}
/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval. This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
assert(RHS.containsOneValue());
// Some number (potentially more than one) value numbers in the current
// interval may be defined as copies from the RHS. Scan the overlapping
// portions of the LHS and RHS, keeping track of this and looking for
// overlapping live ranges that are NOT defined as copies. If these exist, we
// cannot coallesce.