- Dec 12, 2012
-
-
Logan Chien authored
Add R_ARM_NONE and R_ARM_PREL31 relocation types to MCExpr. Both of them will be used while generating .ARM.extab and .ARM.exidx sections. llvm-svn: 169965
-
Evan Cheng authored
mention the inline memcpy / memset expansion code is a mess? This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset. The first indicates whether it is expanding a memset or a memcpy / memmove. The later is whether the memset is a memset of zero. It's totally possible (likely even) that targets may want to do different things for memcpy and memset of zero. llvm-svn: 169959
-
Evan Cheng authored
Also added more comments to explain why it is generally ok to return true. - Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to be true for loaded source (memcpy) or zero constants (memset). The poor name choice is probably some kind of legacy issue. llvm-svn: 169954
-
Evan Cheng authored
f64 load / store on non-SSE2 x86 targets. llvm-svn: 169944
-
Jim Grosbach authored
llvm-svn: 169933
-
Jim Grosbach authored
Pre-regalloc frame allocation and referencing has been on by default for ages. No need for the testing option that disables it. llvm-svn: 169931
-
Jim Grosbach authored
Base pointer referencing has been enabled for ages. llvm-svn: 169930
-
Evan Cheng authored
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined term for something like integer immediate materialization. It is always possible to materialize an integer immediate. Whether to use it for memcpy expansion is more a "cost" conceern. llvm-svn: 169929
-
- Dec 11, 2012
-
-
Patrik Hagglund authored
llvm-svn: 169854
-
Patrik Hagglund authored
of EVT. llvm-svn: 169845
-
Patrik Hagglund authored
Accordingly, add helper funtions getSimpleValueType (in parallel to getValueType) in SDValue, SDNode, and TargetLowering. This is the first, in a series of patches. llvm-svn: 169837
-
Evan Cheng authored
llvm-svn: 169811
-
Chad Rosier authored
This shouldn't affect codegen for -O0 compiles as tail call markers are not emitted in unoptimized compiles. Testing with the external/internal nightly test suite reveals no change in compile time performance. Testing with -O1, -O2 and -O3 with fast-isel enabled did not cause any compile-time or execution-time failures. All tests were performed on my x86 machine. I'll monitor our arm testers to ensure no regressions occur there. In an upcoming clang patch I will be marking the objc_autoreleaseReturnValue and objc_retainAutoreleaseReturnValue as tail calls unconditionally. While it's theoretically true that this is just an optimization, it's an optimization that we very much want to happen even at -O0, or else ARC applications become substantially harder to debug. Part of rdar://12553082 llvm-svn: 169796
-
Evan Cheng authored
1. Teach it to use overlapping unaligned load / store to copy / set the trailing bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies. 2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g. x86 and ARM. 3. When memcpy from a constant string, do *not* replace the load with a constant if it's not possible to materialize an integer immediate with a single instruction (required a new target hook: TLI.isIntImmLegal()). 4. Use unaligned load / stores more aggressively if target hooks indicates they are "fast". 5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8. Also increase the threshold to something reasonable (8 for memset, 4 pairs for memcpy). This significantly improves Dhrystone, up to 50% on ARM iOS devices. rdar://12760078 llvm-svn: 169791
-
- Dec 08, 2012
-
-
Benjamin Kramer authored
llvm-svn: 169676
-
Chandler Carruth authored
std::string to a StringRef. Moreover, the method being called accepts a Twine to simplify these patterns. Fixes this ASan failure: ==6312== ERROR: AddressSanitizer: heap-use-after-free on address 0x7fd558b1af58 at pc 0xcb7529 bp 0x7fffff572080 sp 0x7fffff572078 READ of size 1 at 0x7fd558b1af58 thread T0 #0 0xcb7528 .../llvm/include/llvm/ADT/StringRef.h:192 llvm::StringRef::operator[]() #1 0x1d53c0a .../llvm/include/llvm/ADT/StringExtras.h:128 llvm::HashString() #2 0x1d53878 .../llvm/lib/Support/StringMap.cpp:64 llvm::StringMapImpl::LookupBucketFor() #3 0x1b6872f .../llvm/include/llvm/ADT/StringMap.h:352 llvm::StringMap<>::GetOrCreateValue<>() #4 0x1b61836 .../llvm/lib/MC/MCContext.cpp:109 llvm::MCContext::GetOrCreateSymbol() #5 0xe9fd47 .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:154 (anonymous namespace)::ARMELFStreamer::EmitMappingSymbol() #6 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #7 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #8 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #9 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #10 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #11 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #12 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #13 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #14 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #15 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #16 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #17 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #18 0x7fd557d6a11c __libc_start_main 0x7fd558b1af58 is located 24 bytes inside of 29-byte region [0x7fd558b1af40,0x7fd558b1af5d) freed by thread T0 here: #0 0xc337da .../llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:56 operator delete() #1 0x1ee9cef .../libstdc++-v3/include/bits/basic_string.h:535 std::string::~string() #2 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #3 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #4 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #5 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #6 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #7 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #8 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #9 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #10 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #11 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #12 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #13 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #14 0x7fd557d6a11c __libc_start_main llvm-svn: 169668
-
- Dec 07, 2012
-
-
Tim Northover authored
Before this patch, when you objdump an LLVM-compiled file, objdump tried to decode data-in-code sections as if they were code. This patch adds the missing Mapping Symbols, as defined by "ELF for the ARM Architecture" (ARM IHI 0044D). Patch based on work by Greg Fitzgerald. llvm-svn: 169609
-
Matt Beaumont-Gay authored
decide what pattern we want to follow in the future. llvm-svn: 169561
-
- Dec 06, 2012
-
-
Evan Cheng authored
understand target implementation of any_extend / extload, just generate zero_extend in place of any_extend for liveouts when the target knows the zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz). rdar://12771555 llvm-svn: 169536
-
Chad Rosier authored
rdar://12821569 llvm-svn: 169460
-
Evan Cheng authored
and extload's. If they are implemented as zero-extend, or implicitly zero-extend, then this can enable more demanded bits optimizations. e.g. define void @foo(i16* %ptr, i32 %a) nounwind { entry: %tmp1 = icmp ult i32 %a, 100 br i1 %tmp1, label %bb1, label %bb2 bb1: %tmp2 = load i16* %ptr, align 2 br label %bb2 bb2: %tmp3 = phi i16 [ 0, %entry ], [ %tmp2, %bb1 ] %cmp = icmp ult i16 %tmp3, 24 br i1 %cmp, label %bb3, label %exit bb3: call void @bar() nounwind br label %exit exit: ret void } This compiles to the followings before: push {lr} mov r2, #0 cmp r1, #99 bhi LBB0_2 @ BB#1: @ %bb1 ldrh r2, [r0] LBB0_2: @ %bb2 uxth r0, r2 cmp r0, #23 bhi LBB0_4 @ BB#3: @ %bb3 bl _bar LBB0_4: @ %exit pop {lr} bx lr The uxth is not needed since ldrh implicitly zero-extend the high bits. With this change it's eliminated. rdar://12771555 llvm-svn: 169459
-
- Dec 05, 2012
-
-
David Sehr authored
The encoding of NOP in ARMAsmBackend.cpp is missing a trailing zero, which causes the emission of a coprocessor instruction rather than "mov r0, r0" as indicated in the comment. The test also checks for the wrong encoding. http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121203/157919.html llvm-svn: 169420
-
Kevin Enderby authored
This is for the lldb team so most of but not all of the values are to be printed as hex with this option. Some small values like the scale in an X86 address were requested to printed in decimal without the leading 0x. There may be some tweaks need to places that may still be in decimal that they want in hex. Specially for arm. I made my best guess. Any tweaks from here should be simple. I also did the best I know now with help from the C++ gurus creating the cleanest formatImm() utility function and containing the changes. But if someone has a better idea to make something cleaner I'm all ears and game for changing the implementation. rdar://8109283 llvm-svn: 169393
-
Matt Beaumont-Gay authored
(TIL that Clang's -Wparentheses ignores 'x || y && "foo"' on purpose. Neat.) llvm-svn: 169337
-
- Dec 04, 2012
-
-
Evan Cheng authored
llvm-svn: 169325
-
Eli Bendersky authored
textually as NativeClient. Also added a link to the native client project for readers unfamiliar with it. A Clang patch will follow shortly. llvm-svn: 169291
-
Chandler Carruth authored
missed in the first pass because the script didn't yet handle include guards. Note that the script is now able to handle all of these headers without manual edits. =] llvm-svn: 169224
-
Jakob Stoklund Olesen authored
These functions have been replaced by TRI::getRegAllocationHints() which provides the same capabilities. llvm-svn: 169192
-
- Dec 03, 2012
-
-
Jakob Stoklund Olesen authored
This provides the same functionality as getRawAllocationOrder() for the even/odd hints, but without the many constant register arrays. llvm-svn: 169169
-
Chandler Carruth authored
Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] llvm-svn: 169131
-
- Nov 30, 2012
-
-
Sebastian Pop authored
Codegen was failing with an assertion because of unexpected vector operands when legalizing the selection DAG for a MUL instruction. The asserting code was legalizing multiplies for vectors of size 128 bits. It uses a custom lowering to try and detect cases where it can use a VMULL instruction instead of a VMOVL + VMUL. The code was looking for input operands to the MUL that had been sign or zero extended. If it found the extended operands it would drop the sign/zero extension and use the original vector size as input to a VMULL instruction. The code assumed that the original input vector was 64 bits so that after dropping the extension it would fit directly into a D register and could be used as an operand of a VMULL instruction. The input code that trigger the failure used a vector of <4 x i8> that was sign extended to <4 x i32>. It was not safe to drop the sign extension in this case because the original vector is only 32 bits wide. The fix is to insert a sign extension for the vector to reach the required 64 bit size. In this particular example, the vector would need to be sign extented to a <4 x i16>. llvm-svn: 169024
-
Kevin Enderby authored
which would then cause an assert when printed. rdar://11437956 llvm-svn: 168960
-
- Nov 29, 2012
-
-
Quentin Colombet authored
llvm-svn: 168933
-
Silviu Baranga authored
llvm-svn: 168886
-
- Nov 28, 2012
-
-
Benjamin Kramer authored
Fixes 14337. llvm-svn: 168809
-
Jakob Stoklund Olesen authored
This class has been merged into its super-class TargetInstrInfo. llvm-svn: 168760
-
- Nov 27, 2012
-
-
Chad Rosier authored
classes. The vast majority of the remaining issues are due to uses of invalid registers, which are defined by getRegForValue(). Those will be a little more challenging to cleanup. rdar://12719844 llvm-svn: 168735
-
Chad Rosier authored
classes. rdar://12719844 llvm-svn: 168733
-
Chad Rosier authored
classes. Also a bit of cleanup. rdar://12719844 llvm-svn: 168728
-
Chad Rosier authored
classes. The associated test case still doesn't pass, but it does have far fewer issues. rdar://12719844 llvm-svn: 168657
-