Newer
Older
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionTracker.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
static cl::opt<bool>
James Molloy
committed
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
cl::Hidden,
cl::desc("Convert noalias attributes to metadata during inlining."));
Hal Finkel
committed
static cl::opt<bool>
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
cl::init(true), cl::Hidden,
cl::desc("Convert align attributes to assumptions during inlining."));
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
bool InsertLifetime) {
Chad Rosier
committed
return InlineFunction(CallSite(CI), IFI, InsertLifetime);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
bool InsertLifetime) {
Chad Rosier
committed
return InlineFunction(CallSite(II), IFI, InsertLifetime);
}
namespace {
/// A class for recording information about inlining through an invoke.
class InvokeInliningInfo {
BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
SmallVector<Value*, 8> UnwindDestPHIValues;
: OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
// If there are PHI nodes in the unwind destination block, we need to keep
// track of which values came into them from the invoke before removing
// the edge from this block.
llvm::BasicBlock *InvokeBB = II->getParent();
BasicBlock::iterator I = OuterResumeDest->begin();
// Save the value to use for this edge.
PHINode *PHI = cast<PHINode>(I);
UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
}
CallerLPad = cast<LandingPadInst>(I);
/// getOuterResumeDest - The outer unwind destination is the target of
/// unwind edges introduced for calls within the inlined function.
BasicBlock *getOuterResumeDest() const {
BasicBlock *getInnerResumeDest();
LandingPadInst *getLandingPadInst() const { return CallerLPad; }
/// forwardResume - Forward the 'resume' instruction to the caller's landing
/// pad block. When the landing pad block has only one predecessor, this is
/// a simple branch. When there is more than one predecessor, we need to
/// split the landing pad block after the landingpad instruction and jump
/// to there.
Bill Wendling
committed
void forwardResume(ResumeInst *RI,
Craig Topper
committed
SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
/// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
/// destination block for the given basic block, using the values for the
/// original invoke's source block.
void addIncomingPHIValuesFor(BasicBlock *BB) const {
addIncomingPHIValuesForInto(BB, OuterResumeDest);
Bill Wendling
committed
void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
BasicBlock::iterator I = dest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
Bill Wendling
committed
PHINode *phi = cast<PHINode>(I);
phi->addIncoming(UnwindDestPHIValues[i], src);
}
}
};
}
/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
if (InnerResumeDest) return InnerResumeDest;
// Split the landing pad.
BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
InnerResumeDest =
OuterResumeDest->splitBasicBlock(SplitPoint,
OuterResumeDest->getName() + ".body");
// The number of incoming edges we expect to the inner landing pad.
const unsigned PHICapacity = 2;
// Create corresponding new PHIs for all the PHIs in the outer landing pad.
BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
BasicBlock::iterator I = OuterResumeDest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
PHINode *OuterPHI = cast<PHINode>(I);
PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
OuterPHI->getName() + ".lpad-body",
InsertPoint);
OuterPHI->replaceAllUsesWith(InnerPHI);
InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
}
// Create a PHI for the exception values.
InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
"eh.lpad-body", InsertPoint);
CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
// All done.
return InnerResumeDest;
}
/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
/// block. When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI,
Craig Topper
committed
SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
BasicBlock *Dest = getInnerResumeDest();
BasicBlock *Src = RI->getParent();
BranchInst::Create(Dest, Src);
// Update the PHIs in the destination. They were inserted in an order which
// makes this work.
addIncomingPHIValuesForInto(Src, Dest);
InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
RI->eraseFromParent();
}
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes. This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
InvokeInliningInfo &Invoke) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = BBI++;
// We only need to check for function calls: inlined invoke
// instructions require no special handling.
CallInst *CI = dyn_cast<CallInst>(I);
// If this call cannot unwind, don't convert it to an invoke.
// Inline asm calls cannot throw.
if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
continue;
// Convert this function call into an invoke instruction. First, split the
// basic block.
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
// Create the new invoke instruction.
ImmutableCallSite CS(CI);
SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
Invoke.getOuterResumeDest(),
InvokeArgs, CI->getName(), BB);
David Blaikie
committed
II->setDebugLoc(CI->getDebugLoc());
II->setCallingConv(CI->getCallingConv());
II->setAttributes(CI->getAttributes());
// Make sure that anything using the call now uses the invoke! This also
// updates the CallGraph if present, because it uses a WeakVH.
CI->replaceAllUsesWith(II);
// Delete the original call
Split->getInstList().pop_front();
// Update any PHI nodes in the exceptional block to indicate that there is
// now a new entry in them.
Invoke.addIncomingPHIValuesFor(BB);
}
}
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
Bill Wendling
committed
/// in the body of the inlined function into invokes.
/// II is the invoke instruction being inlined. FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
ClonedCodeInfo &InlinedCodeInfo) {
BasicBlock *InvokeDest = II->getUnwindDest();
Function *Caller = FirstNewBlock->getParent();
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
// rewrite.
InvokeInliningInfo Invoke(II);
Bill Wendling
committed
// Get all of the inlined landing pad instructions.
SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
InlinedLPads.insert(II->getLandingPadInst());
// Append the clauses from the outer landing pad instruction into the inlined
// landing pad instructions.
LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
for (LandingPadInst *InlinedLPad : InlinedLPads) {
unsigned OuterNum = OuterLPad->getNumClauses();
InlinedLPad->reserveClauses(OuterNum);
for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
if (OuterLPad->isCleanup())
InlinedLPad->setCleanup(true);
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
if (InlinedCodeInfo.ContainsCalls)
HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
// Forward any resumes that are remaining here.
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
Bill Wendling
committed
Invoke.forwardResume(RI, InlinedLPads);
}
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
}
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/// CloneAliasScopeMetadata - When inlining a function that contains noalias
/// scope metadata, this metadata needs to be cloned so that the inlined blocks
/// have different "unqiue scopes" at every call site. Were this not done, then
/// aliasing scopes from a function inlined into a caller multiple times could
/// not be differentiated (and this would lead to miscompiles because the
/// non-aliasing property communicated by the metadata could have
/// call-site-specific control dependencies).
static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
const Function *CalledFunc = CS.getCalledFunction();
SetVector<const MDNode *> MD;
// Note: We could only clone the metadata if it is already used in the
// caller. I'm omitting that check here because it might confuse
// inter-procedural alias analysis passes. We can revisit this if it becomes
// an efficiency or overhead problem.
for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
I != IE; ++I)
for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
MD.insert(M);
if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
MD.insert(M);
}
if (MD.empty())
return;
// Walk the existing metadata, adding the complete (perhaps cyclic) chain to
// the set.
SmallVector<const Value *, 16> Queue(MD.begin(), MD.end());
while (!Queue.empty()) {
const MDNode *M = cast<MDNode>(Queue.pop_back_val());
for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
if (MD.insert(M1))
Queue.push_back(M1);
}
// Now we have a complete set of all metadata in the chains used to specify
// the noalias scopes and the lists of those scopes.
SmallVector<MDNode *, 16> DummyNodes;
DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap;
for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
I != IE; ++I) {
Craig Topper
committed
MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None);
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
DummyNodes.push_back(Dummy);
MDMap[*I] = Dummy;
}
// Create new metadata nodes to replace the dummy nodes, replacing old
// metadata references with either a dummy node or an already-created new
// node.
for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
I != IE; ++I) {
SmallVector<Value *, 4> NewOps;
for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
const Value *V = (*I)->getOperand(i);
if (const MDNode *M = dyn_cast<MDNode>(V))
NewOps.push_back(MDMap[M]);
else
NewOps.push_back(const_cast<Value *>(V));
}
MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps),
*TempM = MDMap[*I];
TempM->replaceAllUsesWith(NewM);
}
// Now replace the metadata in the new inlined instructions with the
// repacements from the map.
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
VMI != VMIE; ++VMI) {
if (!VMI->second)
continue;
Instruction *NI = dyn_cast<Instruction>(VMI->second);
if (!NI)
continue;
if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
MDNode *NewMD = MDMap[M];
// If the call site also had alias scope metadata (a list of scopes to
// which instructions inside it might belong), propagate those scopes to
// the inlined instructions.
if (MDNode *CSM =
CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
NewMD = MDNode::concatenate(NewMD, CSM);
NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
} else if (NI->mayReadOrWriteMemory()) {
if (MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
NI->setMetadata(LLVMContext::MD_alias_scope, M);
}
if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
MDNode *NewMD = MDMap[M];
// If the call site also had noalias metadata (a list of scopes with
// which instructions inside it don't alias), propagate those scopes to
// the inlined instructions.
if (MDNode *CSM =
CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
NewMD = MDNode::concatenate(NewMD, CSM);
NI->setMetadata(LLVMContext::MD_noalias, NewMD);
} else if (NI->mayReadOrWriteMemory()) {
if (MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
NI->setMetadata(LLVMContext::MD_noalias, M);
}
}
// Now that everything has been replaced, delete the dummy nodes.
for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i)
MDNode::deleteTemporary(DummyNodes[i]);
}
/// AddAliasScopeMetadata - If the inlined function has noalias arguments, then
/// add new alias scopes for each noalias argument, tag the mapped noalias
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
const DataLayout *DL, AliasAnalysis *AA) {
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
if (!EnableNoAliasConversion)
return;
const Function *CalledFunc = CS.getCalledFunction();
SmallVector<const Argument *, 4> NoAliasArgs;
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
E = CalledFunc->arg_end(); I != E; ++I) {
if (I->hasNoAliasAttr() && !I->hasNUses(0))
NoAliasArgs.push_back(I);
}
if (NoAliasArgs.empty())
return;
// To do a good job, if a noalias variable is captured, we need to know if
// the capture point dominates the particular use we're considering.
DominatorTree DT;
DT.recalculate(const_cast<Function&>(*CalledFunc));
// noalias indicates that pointer values based on the argument do not alias
// pointer values which are not based on it. So we add a new "scope" for each
// noalias function argument. Accesses using pointers based on that argument
// become part of that alias scope, accesses using pointers not based on that
// argument are tagged as noalias with that scope.
DenseMap<const Argument *, MDNode *> NewScopes;
MDBuilder MDB(CalledFunc->getContext());
// Create a new scope domain for this function.
MDNode *NewDomain =
MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
const Argument *A = NoAliasArgs[i];
std::string Name = CalledFunc->getName();
if (A->hasName()) {
Name += ": %";
Name += A->getName();
} else {
Name += ": argument ";
Name += utostr(i);
}
// Note: We always create a new anonymous root here. This is true regardless
// of the linkage of the callee because the aliasing "scope" is not just a
// property of the callee, but also all control dependencies in the caller.
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
NewScopes.insert(std::make_pair(A, NewScope));
}
// Iterate over all new instructions in the map; for all memory-access
// instructions, add the alias scope metadata.
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
VMI != VMIE; ++VMI) {
if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
if (!VMI->second)
continue;
Instruction *NI = dyn_cast<Instruction>(VMI->second);
if (!NI)
continue;
bool IsArgMemOnlyCall = false, IsFuncCall = false;
SmallVector<const Value *, 2> PtrArgs;
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
PtrArgs.push_back(LI->getPointerOperand());
else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
PtrArgs.push_back(SI->getPointerOperand());
else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
PtrArgs.push_back(VAAI->getPointerOperand());
else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
PtrArgs.push_back(CXI->getPointerOperand());
else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
PtrArgs.push_back(RMWI->getPointerOperand());
Hal Finkel
committed
else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
Hal Finkel
committed
// If we know that the call does not access memory, then we'll still
// know that about the inlined clone of this call site, and we don't
// need to add metadata.
Hal Finkel
committed
if (ICS.doesNotAccessMemory())
continue;
IsFuncCall = true;
if (AA) {
AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
MRB == AliasAnalysis::OnlyReadsArgumentPointees)
IsArgMemOnlyCall = true;
}
Hal Finkel
committed
for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
AE = ICS.arg_end(); AI != AE; ++AI) {
Hal Finkel
committed
// We need to check the underlying objects of all arguments, not just
// the pointer arguments, because we might be passing pointers as
// integers, etc.
// However, if we know that the call only accesses pointer arguments,
Hal Finkel
committed
// then we only need to check the pointer arguments.
if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
continue;
Hal Finkel
committed
PtrArgs.push_back(*AI);
}
}
// If we found no pointers, then this instruction is not suitable for
// pairing with an instruction to receive aliasing metadata.
Hal Finkel
committed
// However, if this is a call, this we might just alias with none of the
// noalias arguments.
if (PtrArgs.empty() && !IsFuncCall)
continue;
// It is possible that there is only one underlying object, but you
// need to go through several PHIs to see it, and thus could be
// repeated in the Objects list.
SmallPtrSet<const Value *, 4> ObjSet;
SmallVector<Value *, 4> Scopes, NoAliases;
SmallSetVector<const Argument *, 4> NAPtrArgs;
for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
SmallVector<Value *, 4> Objects;
GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
Objects, DL, /* MaxLookup = */ 0);
for (Value *O : Objects)
ObjSet.insert(O);
}
// Figure out if we're derived from anything that is not a noalias
// argument.
Hal Finkel
committed
bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
for (const Value *V : ObjSet) {
// Is this value a constant that cannot be derived from any pointer
// value (we need to exclude constant expressions, for example, that
// are formed from arithmetic on global symbols).
bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
isa<ConstantPointerNull>(V) ||
isa<ConstantDataVector>(V) || isa<UndefValue>(V);
if (IsNonPtrConst)
continue;
// If this is anything other than a noalias argument, then we cannot
// completely describe the aliasing properties using alias.scope
// metadata (and, thus, won't add any).
if (const Argument *A = dyn_cast<Argument>(V)) {
if (!A->hasNoAliasAttr())
UsesAliasingPtr = true;
} else {
Hal Finkel
committed
UsesAliasingPtr = true;
}
// If this is not some identified function-local object (which cannot
// directly alias a noalias argument), or some other argument (which,
// by definition, also cannot alias a noalias argument), then we could
// alias a noalias argument that has been captured).
if (!isa<Argument>(V) &&
!isIdentifiedFunctionLocal(const_cast<Value*>(V)))
CanDeriveViaCapture = true;
Hal Finkel
committed
}
// A function call can always get captured noalias pointers (via other
// parameters, globals, etc.).
if (IsFuncCall && !IsArgMemOnlyCall)
CanDeriveViaCapture = true;
// First, we want to figure out all of the sets with which we definitely
// don't alias. Iterate over all noalias set, and add those for which:
// 1. The noalias argument is not in the set of objects from which we
// definitely derive.
// 2. The noalias argument has not yet been captured.
// An arbitrary function that might load pointers could see captured
// noalias arguments via other noalias arguments or globals, and so we
// must always check for prior capture.
for (const Argument *A : NoAliasArgs) {
if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
Hal Finkel
committed
// It might be tempting to skip the
// PointerMayBeCapturedBefore check if
// A->hasNoCaptureAttr() is true, but this is
// incorrect because nocapture only guarantees
// that no copies outlive the function, not
// that the value cannot be locally captured.
!PointerMayBeCapturedBefore(A,
/* ReturnCaptures */ false,
/* StoreCaptures */ false, I, &DT)))
NoAliases.push_back(NewScopes[A]);
}
if (!NoAliases.empty())
NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
NI->getMetadata(LLVMContext::MD_noalias),
MDNode::get(CalledFunc->getContext(), NoAliases)));
Hal Finkel
committed
// Next, we want to figure out all of the sets to which we might belong.
Hal Finkel
committed
// We might belong to a set if the noalias argument is in the set of
// underlying objects. If there is some non-noalias argument in our list
// of underlying objects, then we cannot add a scope because the fact
// that some access does not alias with any set of our noalias arguments
// cannot itself guarantee that it does not alias with this access
// (because there is some pointer of unknown origin involved and the
// other access might also depend on this pointer). We also cannot add
// scopes to arbitrary functions unless we know they don't access any
// non-parameter pointer-values.
bool CanAddScopes = !UsesAliasingPtr;
if (CanAddScopes && IsFuncCall)
CanAddScopes = IsArgMemOnlyCall;
Hal Finkel
committed
if (CanAddScopes)
for (const Argument *A : NoAliasArgs) {
if (ObjSet.count(A))
Scopes.push_back(NewScopes[A]);
}
if (!Scopes.empty())
NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
NI->getMetadata(LLVMContext::MD_alias_scope),
MDNode::get(CalledFunc->getContext(), Scopes)));
}
}
}
Hal Finkel
committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/// If the inlined function has non-byval align arguments, then
/// add @llvm.assume-based alignment assumptions to preserve this information.
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
if (!PreserveAlignmentAssumptions || !IFI.DL)
return;
// To avoid inserting redundant assumptions, we should check for assumptions
// already in the caller. To do this, we might need a DT of the caller.
DominatorTree DT;
bool DTCalculated = false;
const Function *CalledFunc = CS.getCalledFunction();
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
E = CalledFunc->arg_end(); I != E; ++I) {
unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
if (!DTCalculated) {
DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
->getParent()));
DTCalculated = true;
}
// If we can already prove the asserted alignment in the context of the
// caller, then don't bother inserting the assumption.
Value *Arg = CS.getArgument(I->getArgNo());
if (getKnownAlignment(Arg, IFI.DL, IFI.AT, CS.getInstruction(),
&DT) >= Align)
continue;
IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg,
Align);
}
}
}
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made. Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
Function::iterator FirstNewBlock,
ValueToValueMapTy &VMap,
InlineFunctionInfo &IFI) {
CallGraph &CG = *IFI.CG;
const Function *Caller = CS.getInstruction()->getParent()->getParent();
const Function *Callee = CS.getCalledFunction();
CallGraphNode *CalleeNode = CG[Callee];
CallGraphNode *CallerNode = CG[Caller];
// Since we inlined some uninlined call sites in the callee into the caller,
// add edges from the caller to all of the callees of the callee.
CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
// Consider the case where CalleeNode == CallerNode.
CallGraphNode::CalledFunctionsVector CallCache;
if (CalleeNode == CallerNode) {
CallCache.assign(I, E);
I = CallCache.begin();
E = CallCache.end();
}
for (; I != E; ++I) {
const Value *OrigCall = I->first;
ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
// Only copy the edge if the call was inlined!
if (VMI == VMap.end() || VMI->second == nullptr)
continue;
// If the call was inlined, but then constant folded, there is no edge to
// add. Check for this case.
Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
// Remember that this call site got inlined for the client of
// InlineFunction.
IFI.InlinedCalls.push_back(NewCall);
// It's possible that inlining the callsite will cause it to go from an
// indirect to a direct call by resolving a function pointer. If this
// happens, set the callee of the new call site to a more precise
// destination. This can also happen if the call graph node of the caller
// was just unnecessarily imprecise.
if (Function *F = CallSite(NewCall).getCalledFunction()) {
// Indirect call site resolved to direct call.
CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
CallerNode->addCalledFunction(CallSite(NewCall), I->second);
}
// Update the call graph by deleting the edge from Callee to Caller. We must
// do this after the loop above in case Caller and Callee are the same.
CallerNode->removeCallEdgeFor(CS);
}
static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
BasicBlock *InsertBlock,
InlineFunctionInfo &IFI) {
Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
IRBuilder<> Builder(InsertBlock->begin());
Value *Size;
Size = ConstantExpr::getSizeOf(AggTy);
else
Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
// better alignment.
Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
}
/// HandleByValArgument - When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
David Majnemer
committed
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
const Function *CalledFunc,
InlineFunctionInfo &IFI,
unsigned ByValAlignment) {
PointerType *ArgTy = cast<PointerType>(Arg->getType());
Type *AggTy = ArgTy->getElementType();
// If the called function is readonly, then it could not mutate the caller's
// copy of the byval'd memory. In this case, it is safe to elide the copy and
// temporary.
David Majnemer
committed
if (CalledFunc->onlyReadsMemory()) {
// If the byval argument has a specified alignment that is greater than the
// passed in pointer, then we either have to round up the input pointer or
// give up on this transformation.
if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
David Majnemer
committed
return Arg;
// If the pointer is already known to be sufficiently aligned, or if we can
// round it up to a larger alignment, then we don't need a temporary.
David Majnemer
committed
if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
IFI.DL, IFI.AT, TheCall) >= ByValAlignment)
David Majnemer
committed
return Arg;
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
// for code quality, but rarely happens and is required for correctness.
}
// Create the alloca. If we have DataLayout, use nice alignment.
unsigned Align = 1;
if (IFI.DL)
Align = IFI.DL->getPrefTypeAlignment(AggTy);
// If the byval had an alignment specified, we *must* use at least that
// alignment, as it is required by the byval argument (and uses of the
// pointer inside the callee).
Align = std::max(Align, ByValAlignment);
Function *Caller = TheCall->getParent()->getParent();
Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
&*Caller->begin()->begin());
Julien Lerouge
committed
IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
// Uses of the argument in the function should use our new alloca
// instead.
return NewAlloca;
}
Nick Lewycky
committed
// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
// intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
for (User *U : V->users()) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
Nick Lewycky
committed
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return true;
}
}
}
return false;
}
// hasLifetimeMarkers - Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
Type *Ty = AI->getType();
Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
Ty->getPointerAddressSpace());
if (Ty == Int8PtrTy)
Nick Lewycky
committed
return isUsedByLifetimeMarker(AI);
// Do a scan to find all the casts to i8*.
for (User *U : AI->users()) {
if (U->getType() != Int8PtrTy) continue;
if (U->stripPointerCasts() != AI) continue;
if (isUsedByLifetimeMarker(U))
Nick Lewycky
committed
return true;
}
return false;
}
/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
/// recursively update InlinedAtEntry of a DebugLoc.
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
const DebugLoc &InlinedAtDL,
LLVMContext &Ctx) {
if (MDNode *IA = DL.getInlinedAt(Ctx)) {
DebugLoc NewInlinedAtDL
= updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
NewInlinedAtDL.getAsMDNode(Ctx));
}
return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
InlinedAtDL.getAsMDNode(Ctx));
}
/// fixupLineNumbers - Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
DebugLoc TheCallDL = TheCall->getDebugLoc();
if (TheCallDL.isUnknown())
return;
for (; FI != Fn->end(); ++FI) {
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {
DebugLoc DL = BI->getDebugLoc();
if (DL.isUnknown()) {
// If the inlined instruction has no line number, make it look as if it
// originates from the call location. This is important for
// ((__always_inline__, __nodebug__)) functions which must use caller
// location for all instructions in their function body.
BI->setDebugLoc(TheCallDL);
} else {
BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
LLVMContext &Ctx = BI->getContext();
MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
InlinedAt, Ctx));
}
}
}
}
}
/// InlineFunction - This function inlines the called function into the basic
/// block of the caller. This returns false if it is not possible to inline
/// this call. The program is still in a well defined state if this occurs
/// though.
///
/// Note that this only does one level of inlining. For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream. Similarly this will inline a recursive
/// function by one level.
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
bool InsertLifetime) {
Instruction *TheCall = CS.getInstruction();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
// If IFI has any state in it, zap it before we fill it in.
IFI.reset();
const Function *CalledFunc = CS.getCalledFunction();
if (!CalledFunc || // Can't inline external function or indirect
CalledFunc->isDeclaration() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
// If the call to the callee cannot throw, set the 'nounwind' flag on any
// calls that we inline.
bool MarkNoUnwind = CS.doesNotThrow();
BasicBlock *OrigBB = TheCall->getParent();
Function *Caller = OrigBB->getParent();
// GC poses two hazards to inlining, which only occur when the callee has GC:
// 1. If the caller has no GC, then the callee's GC must be propagated to the
// caller.
// 2. If the caller has a differing GC, it is invalid to inline.
if (CalledFunc->hasGC()) {
if (!Caller->hasGC())
Caller->setGC(CalledFunc->getGC());
else if (CalledFunc->getGC() != Caller->getGC())
Benjamin Kramer
committed
// Get the personality function from the callee if it contains a landing pad.
Value *CalleePersonality = nullptr;
Benjamin Kramer
committed
for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
I != E; ++I)
if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
const BasicBlock *BB = II->getUnwindDest();
const LandingPadInst *LP = BB->getLandingPadInst();
CalleePersonality = LP->getPersonalityFn();
Benjamin Kramer
committed
// Find the personality function used by the landing pads of the caller. If it
// exists, then check to see that it matches the personality function used in
// the callee.
Benjamin Kramer
committed
for (Function::const_iterator I = Caller->begin(), E = Caller->end();
I != E; ++I)
if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
const BasicBlock *BB = II->getUnwindDest();
const LandingPadInst *LP = BB->getLandingPadInst();
Benjamin Kramer
committed
// If the personality functions match, then we can perform the
// inlining. Otherwise, we can't inline.
// TODO: This isn't 100% true. Some personality functions are proper
// supersets of others and can be used in place of the other.
if (LP->getPersonalityFn() != CalleePersonality)
return false;
break;
}
Benjamin Kramer
committed
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
Function::iterator LastBlock = &Caller->back();
// Make sure to capture all of the return instructions from the cloned
// function.
SmallVector<ReturnInst*, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
ValueToValueMapTy VMap;
// Keep a list of pair (dst, src) to emit byval initializations.
SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
Chris Lattner
committed
assert(CalledFunc->arg_size() == CS.arg_size() &&
"No varargs calls can be inlined!");
// Calculate the vector of arguments to pass into the function cloner, which
// matches up the formal to the actual argument values.
CallSite::arg_iterator AI = CS.arg_begin();
unsigned ArgNo = 0;
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
Value *ActualArg = *AI;
// When byval arguments actually inlined, we need to make the copy implied
// by them explicit. However, we don't do this if the callee is readonly
// or readnone, because the copy would be unneeded: the callee doesn't
// modify the struct.
Nick Lewycky
committed
if (CS.isByValArgument(ArgNo)) {
David Majnemer
committed
ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
CalledFunc->getParamAlignment(ArgNo+1));
if (ActualArg != *AI)
ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
Hal Finkel
committed
// Add alignment assumptions if necessary. We do this before the inlined
// instructions are actually cloned into the caller so that we can easily
// check what will be known at the start of the inlined code.
AddAlignmentAssumptions(CS, IFI);
Chris Lattner
committed
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
/*ModuleLevelChanges=*/false, Returns, ".i",
&InlinedFunctionInfo, IFI.DL, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;