Newer
Older
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
MaheshRavishankar
committed
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
River Riddle
committed
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(context,
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
})));
}
/// Update the index accesses of linalg operations having index semantics.
template <typename GenericOpTy>
static void replaceUnitDimIndexOps(GenericOpTy op,
const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
assert(op->getNumRegions() == 1 && op->getRegion(0).getBlocks().size() == 1 &&
"expected generic operation to have one block.");
Block &block = op->getRegion(0).front();
for (IndexOp indexOp : llvm::make_early_inc_range(block.getOps<IndexOp>())) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(indexOp);
if (unitDims.count(indexOp.dim()) != 0) {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(indexOp, 0);
} else {
// Update the dimension of the index operation if needed.
unsigned droppedDims = llvm::count_if(
unitDims, [&](unsigned dim) { return dim < indexOp.dim(); });
if (droppedDims != 0)
rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
indexOp.dim() - droppedDims);
}
}
}
/// Modify the region of indexed generic op to drop arguments corresponding to
/// loops that are unit trip count.
template <typename OpTy>
static LogicalResult
replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriterp) {
return success();
}
template <>
LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>(
IndexedGenericOp op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
Christian Sigg
committed
Block *entryBlock = &op->getRegion(0).front();
rewriter.setInsertionPointToStart(entryBlock);
Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
for (unsigned unitDimLoop : unitDims) {
entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero);
}
SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end());
entryBlock->eraseArguments(unitDimsToErase);
return success();
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
template <typename GenericOpTy>
struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t, 4> dims;
for (ShapedType shapedType : op.getShapedOperandTypes())
dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
MaheshRavishankar
committed
// Find all the reduction iterators. Those need some special consideration
// (see below).
auto getLoopDimsOfType =
[&](StringRef iteratorTypeName) -> SmallVector<unsigned, 4> {
SmallVector<AffineExpr> dimExprs;
getDimsOfType(op, iteratorTypeName, dimExprs);
return llvm::to_vector<4>(llvm::map_range(dimExprs, [](AffineExpr expr) {
return expr.cast<AffineDimExpr>().getPosition();
}));
};
auto reductionDims = getLoopDimsOfType(getReductionIteratorTypeName());
DenseSet<unsigned> unitDims;
MaheshRavishankar
committed
SmallVector<unsigned, 4> unitDimsReductionLoops;
ArrayAttr iteratorTypes = op.iterator_types();
for (auto expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
MaheshRavishankar
committed
if (dims[dimExpr.getPosition()] == 1) {
if (isParallelIterator(iteratorTypes[expr.index()]))
unitDims.insert(expr.index());
else if (isReductionIterator(iteratorTypes[expr.index()]))
unitDimsReductionLoops.push_back(expr.index());
}
MaheshRavishankar
committed
// Reduction loops can be dropped if there is at least one other reduction
// loop that is not dropped. This accounts for the initial value read in the
// reduction loop.
if (!unitDimsReductionLoops.empty() && reductionDims.size() > 1) {
if (unitDimsReductionLoops.size() == reductionDims.size())
unitDims.insert(reductionDims.begin(), std::prev(reductionDims.end()));
else
unitDims.insert(unitDimsReductionLoops.begin(),
unitDimsReductionLoops.end());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return op.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(op);
op.indexing_mapsAttr(newIndexingMapAttr);
op.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes));
(void)replaceBlockArgForUnitDimLoops(op, unitDims, rewriter);
replaceUnitDimIndexOps(op, unitDims, rewriter);
rewriter.finalizeRootUpdate(op);
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
return success();
}
};
struct UnitExtentReplacementInfo {
RankedTensorType type;
AffineMap indexMap;
ArrayAttr reassociation;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
RankedTensorType type,
MLIRContext *context) {
ArrayRef<int64_t> shape = type.getShape();
ArrayRef<AffineExpr> exprs = indexMap.getResults();
SmallVector<AffineExpr, 2> reassociations;
SmallVector<Attribute, 4> reassociationMaps;
SmallVector<AffineExpr, 4> newIndexExprs;
SmallVector<int64_t, 4> newShape;
int64_t origRank = type.getRank();
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
unsigned dim = 0;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociations.push_back(getAffineDimExpr(dim++, context));
while (dim < origRank) {
reassociations.push_back(getAffineDimExpr(dim, context));
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
// Fold all following dimensions that are unit-extent.
while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
++dim;
reassociations.push_back(getAffineDimExpr(dim, context));
}
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
origRank, /*numSymbols = */ 0, reassociations, context)));
reassociations.clear();
++dim;
}
UnitExtentReplacementInfo info = {
RankedTensorType::get(newShape, type.getElementType()),
AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
newIndexExprs, context),
ArrayAttr::get(context, reassociationMaps)};
return info;
}
namespace {
/// Pattern to replace tensors operands/results that are unit extents.
template <typename GenericOpTy>
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
if (!op.hasTensorSemantics())
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = op.getLoc();
SmallVector<AffineMap, 4> newIndexingMaps;
SmallVector<ArrayAttr, 4> reassociationMaps;
SmallVector<ShapedType, 4> newInputOutputTypes;
bool doCanonicalization = false;
for (auto it :
llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) {
auto replacementInfo = replaceUnitExtents(
std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(),
context);
reassociationMaps.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
newInputOutputTypes.push_back(replacementInfo.type);
doCanonicalization |= replacementInfo.type != std::get<1>(it);
}
// If the indexing maps of the result operation are not invertible (i.e. not
// legal), abort.
if (!doCanonicalization ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// If any operand type change, insert a reshape to convert from the original
// type to the new type.
// TODO: get rid of flattenedIdx which assumes operand order and contiguity.
unsigned flattenedIdx = 0;
auto insertReshapes = [&](ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(values.size());
for (auto operand : llvm::enumerate(values)) {
if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
res.push_back(operand.value());
else
res.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, newInputOutputTypes[flattenedIdx], operand.value(),
reassociationMaps[flattenedIdx]));
++flattenedIdx;
return res;
};
SmallVector<Value, 4> newInputs = insertReshapes(op.inputs());
SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs());
// If any result type changes, insert a reshape to convert from the original
// type to the new type.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(op.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults()))
resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]);
GenericOpTy replacementOp = rewriter.create<GenericOpTy>(
loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
llvm::to_vector<4>(
op.iterator_types().template getAsValueRange<StringAttr>()));
rewriter.inlineRegionBefore(op.region(), replacementOp.region(),
replacementOp.region().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value, 4> resultReplacements;
for (auto result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumInputs();
RankedTensorType origResultType = op.getResult(result.index())
.getType()
.template cast<RankedTensorType>();
if (origResultType != result.value().getType())
resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, origResultType, result.value(), reassociationMaps[index]));
resultReplacements.push_back(result.value());
}
rewriter.replaceOp(op, resultReplacements);
return success();
}
};
MaheshRavishankar
committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/// Pattern to fold pair of reshape ops where the intermediate has unit-dims for
/// example:
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<2048xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<1x4x1x512xf32> into tensor<4x512xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<2048xf32> into tensor<4x512xf32>
///
/// Similarly,
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<4x512xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<1x4x1x512xf32> into tensor<2048xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<4x512xf32> into tensor<2048xf32>
struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Check that the source operand is created from a reshape as well.
TensorReshapeOp parentReshapeOp =
reshapeOp.src().getDefiningOp<TensorReshapeOp>();
if (!parentReshapeOp)
return failure();
RankedTensorType srcType = reshapeOp.getSrcType(),
dstType = reshapeOp.getResultType(),
parentSrcType = parentReshapeOp.getSrcType();
if (!srcType.hasStaticShape() || !dstType.hasStaticShape() ||
!parentSrcType.hasStaticShape() ||
srcType.getRank() < dstType.getRank() ||
parentSrcType.getRank() == dstType.getRank())
return failure();
MaheshRavishankar
committed
// Check if the result tensor_reshape is folding or expanding after folding
// the reshapeOp and parentReshapeOp are combined. If the final
// tensor_reshape is folding, the parentReshapeOp is introducing unit-dims,
// and the reshapeOp does an actual reshape. If the final tensor_reshape op
// is expanding, the reshapeOp is introducing unit-dims, and the
// parentReshapeOp does an actual reshape.
MaheshRavishankar
committed
bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank();
ArrayRef<int64_t> expandedShape =
MaheshRavishankar
committed
isFoldingPattern ? parentSrcType.getShape() : dstType.getShape();
ArrayRef<int64_t> foldedShape =
isFoldingPattern ? dstType.getShape() : parentSrcType.getShape();
unsigned expandedDim = 0, foldedDim = 0;
SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs(
foldedShape.size());
while (expandedDim < expandedShape.size() &&
foldedDim < foldedShape.size()) {
int64_t dstSize = foldedShape[foldedDim];
int64_t srcSize = expandedShape[expandedDim];
while (srcSize < dstSize && expandedDim < expandedShape.size()) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
srcSize *= expandedShape[expandedDim];
MaheshRavishankar
committed
}
if (srcSize == dstSize) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
// If the next dim in foldedShape is not 1, treat subsequent dims in
// expandedShape which are 1 to be collapsed.
if (foldedDim == foldedShape.size() - 1 ||
foldedShape[foldedDim + 1] != 1) {
while (expandedDim < expandedShape.size() &&
expandedShape[expandedDim] == 1) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
}
}
} else {
return failure();
MaheshRavishankar
committed
}
foldedDim++;
// If inner most dims are folded there shouldn't be any leading 1 dims.
// otherwise these dims are not mapped and will lead into an illegal
// reshape.
if (expandedDim == expandedShape.size()) {
if (foldedDim < foldedShape.size() && foldedShape[foldedDim] == 1) {
return failure();
}
}
MaheshRavishankar
committed
}
if (expandedDim != expandedShape.size())
return failure();
MaheshRavishankar
committed
SmallVector<AffineMap, 4> reassociationMaps =
llvm::to_vector<4>(llvm::map_range(
reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap {
return AffineMap::get(expandedShape.size(), 0, exprs,
rewriter.getContext());
}));
MaheshRavishankar
committed
rewriter.replaceOpWithNewOp<TensorReshapeOp>(
reshapeOp, dstType, parentReshapeOp.src(),
rewriter.getAffineMapArrayAttr(reassociationMaps));
return success();
}
};
MaheshRavishankar
committed
} // namespace
MaheshRavishankar
committed
MaheshRavishankar
committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/// Get the reassociation maps to fold the result of a subtensor (or source of a
/// subtensor_insert) operation with given offsets, and sizes to its
/// rank-reduced version. This is only done for the cases where the size is 1
/// and offset is 0. Strictly speaking the offset 0 is not required in general,
/// but non-zero offsets are not handled by SPIR-V backend at this point (and
/// potentially cannot be handled).
static Optional<SmallVector<ReassociationIndices>>
getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) {
SmallVector<ReassociationIndices> reassociation;
ReassociationIndices curr;
for (auto it : llvm::enumerate(mixedSizes)) {
auto dim = it.index();
auto size = it.value();
curr.push_back(dim);
auto attr = size.dyn_cast<Attribute>();
if (attr && attr.cast<IntegerAttr>().getInt() == 1)
continue;
reassociation.emplace_back(ReassociationIndices{});
std::swap(reassociation.back(), curr);
}
if (!curr.empty())
reassociation.back().append(curr.begin(), curr.end());
return reassociation;
}
namespace {
/// Convert `subtensor` operations to rank-reduced versions.
struct UseRankReducedSubTensorOp : public OpRewritePattern<SubTensorOp> {
MaheshRavishankar
committed
using OpRewritePattern<SubTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
PatternRewriter &rewriter) const override {
MaheshRavishankar
committed
RankedTensorType resultType = subTensorOp.getType();
SmallVector<OpFoldResult> offsets = subTensorOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = subTensorOp.getMixedSizes();
SmallVector<OpFoldResult> strides = subTensorOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
MaheshRavishankar
committed
return failure();
MaheshRavishankar
committed
auto rankReducedType =
SubTensorOp::inferRankReducedResultType(reassociation->size(),
subTensorOp.getSourceType(),
offsets, sizes, strides)
.cast<RankedTensorType>();
Location loc = subTensorOp.getLoc();
Value newSubTensor = rewriter.create<SubTensorOp>(
loc, rankReducedType, subTensorOp.source(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<TensorReshapeOp>(subTensorOp, resultType,
newSubTensor, *reassociation);
return success();
}
};
MaheshRavishankar
committed
MaheshRavishankar
committed
/// Convert `subtensor_insert` operations to rank-reduced versions.
struct UseRankReducedSubTensorInsertOp
: public OpRewritePattern<SubTensorInsertOp> {
using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorInsertOp insertOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertOp.getSourceType();
SmallVector<OpFoldResult> offsets = insertOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = insertOp.getMixedSizes();
SmallVector<OpFoldResult> strides = insertOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(sourceType.getRank()))
MaheshRavishankar
committed
return failure();
MaheshRavishankar
committed
Location loc = insertOp.getLoc();
auto reshapedSource = rewriter.create<TensorReshapeOp>(
loc, insertOp.source(), *reassociation);
rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
insertOp, reshapedSource, insertOp.dest(), insertOp.getMixedOffsets(),
insertOp.getMixedSizes(), insertOp.getMixedStrides());
MaheshRavishankar
committed
return success();
}
};
MaheshRavishankar
committed
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
MaheshRavishankar
committed
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
patterns.add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>,
MaheshRavishankar
committed
ReplaceUnitExtentTensors<GenericOp>,
ReplaceUnitExtentTensors<IndexedGenericOp>,
UseRankReducedSubTensorOp, UseRankReducedSubTensorInsertOp>(
context);
TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
patterns.add<FoldReshapeOpWithUnitExtent>(context);
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnFunction() override {
FuncOp funcOp = getFunction();
MLIRContext *context = funcOp.getContext();
RewritePatternSet patterns(context);
if (foldOneTripLoopsOnly)
patterns
.add<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>>(
context);
MaheshRavishankar
committed
populateFoldUnitExtentDimsPatterns(patterns);
(void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns));
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}