- Oct 20, 2021
-
-
Jeremy Morse authored
Here's another performance patch for InstrRefBasedLDV: rather than processing all variable values in a scope at a time, instead, process one variable at a time. The benefits are twofold: * It's easier to reason about one variable at a time in your mind, * It improves performance, apparently from increased locality. The downside is that the value-propagation code gets indented one level further, plus there's some churn in the unit tests. Differential Revision: https://reviews.llvm.org/D111799
-
- Oct 19, 2021
-
-
Jeremy Morse authored
This is purely a performance patch: InstrRefBasedLDV used to use three DenseMaps to store variable values, two for long term storage and one as a working set. This patch eliminates the working set, and updates the long term storage in place, thus avoiding two DenseMap comparisons and two DenseMap assignments, which can be expensive. Differential Revision: https://reviews.llvm.org/D111716
-
Jeremy Morse authored
This field gets assigned when the relevant object starts being used; but it remains uninitialized beforehand. This risks introducing hard-to-detect bugs if something changes, so zero-initialize the field.
-
- Oct 14, 2021
-
-
Jeremy Morse authored
This patch is very similar to D110173 / a3936a6c, but for variable values rather than machine values. This is for the second instr-ref problem, calculating the correct variable value on entry to each block. The previous lattice based implementation was broken; we now use LLVMs existing PHI placement utilities to work out where values need to merge, then eliminate un-necessary ones through value propagation. Most of the deletions here happen in vlocJoin: it was trying to pick a location for PHIs to happen in, badly, leading to an infinite loop in the MIR test added, where it would repeatedly switch between register locations. The new approach is simpler: either PHIs can be eliminated, or they can't, and the location of the value is a different problem. Various bits and pieces move to the header so that they can be tested in the unit tests. The DbgValue class grows a "VPHI" kind to represent variable value PHIS that haven't been eliminated yet. Differential Revision: https://reviews.llvm.org/D110630
-
- Oct 13, 2021
-
-
Jeremy Morse authored
In D110173 we start using the existing LLVM IDF calculator to place PHIs as we reconstruct an SSA form of machine-code program. Sadly that's slower than the old (but broken) way, this patch attempts to recover some of that performance. The key observation: every time we def a register, we also have to def it's register units. If we def'd $rax, in the current implementation we independently calculate PHI locations for {al, ah, ax, eax, hax, rax}, and they will all have the same PHI positions. Instead of doing that, we can calculate the PHI positions for {al, ah} and place PHIs for any aliasing registers in the same positions. Any def of a super-register has to def the unit, and vice versa, so this is sound. It cuts down the SSA placement we need to do significantly. This doesn't work for stack slots, or registers we only ever read, so place PHIs normally for those. LiveDebugValues choses to ignore writes to SP at calls, and now have to ignore writes to SP register units too. Differential Revision: https://reviews.llvm.org/D111627
-
Jeremy Morse authored
InstrRefBasedLDV used to try and determine which values are in which registers using a lattice approach; however this is hard to understand, and broken in various ways. This patch replaces that approach with a standard SSA approach using existing LLVM utilities. PHIs are placed at dominance frontiers; value propagation then eliminates un-necessary PHIs. This patch also adds a bunch of unit tests that should cover many of the weirder forms of control flow. Differential Revision: https://reviews.llvm.org/D110173
-
- Oct 12, 2021
-
-
Jeremy Morse authored
These "dump" methods call into MachineOperand::dump, which doesn't exist with NDEBUG, thus we croak. Disable LiveDebugValues dump methods when NDEBUG is turned on to avoid this.
-
Jeremy Morse authored
This patch shifts the InstrRefBasedLDV class declaration to a header. Partially because it's already massive, but mostly so that I can start writing some unit tests for it. This patch also adds the boilerplate for said unit tests. Differential Revision: https://reviews.llvm.org/D110165
-