Newer
Older
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Config/config.h"
using namespace llvm;
STATISTIC(NumSimplified, "Number of library calls simplified");
STATISTIC(NumAnnotated, "Number of attributes added to library functions");
//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class VISIBILITY_HIDDEN LibCallOptimization {
protected:
Function *Caller;
const TargetData *TD;
public:
LibCallOptimization() { }
virtual ~LibCallOptimization() {}
/// CallOptimizer - This pure virtual method is implemented by base classes to
/// do various optimizations. If this returns null then no transformation was
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = &TD;
return CallOptimizer(CI->getCalledFunction(), CI, B);
}
/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Value *CastToCStr(Value *V, IRBuilder<> &B);
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. Ptr is required to be some pointer type, and the
/// return value has 'intptr_t' type.
Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
/// EmitMemCpy - Emit a call to the memcpy function to the builder. This
/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
unsigned Align, IRBuilder<> &B);
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
/// EmitMemCmp - Emit a call to the memcmp function.
Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B);
/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor'). This function is known to take a single of type matching 'Op'
/// and returns one value with the same type. If 'Op' is a long double, 'l'
/// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B);
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
void EmitPutChar(Value *Char, IRBuilder<> &B);
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
void EmitPutS(Value *Str, IRBuilder<> &B);
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an i32, and File is a pointer to FILE.
void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
};
} // End anonymous namespace.
/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
}
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. This always returns an integer value of size intptr_t.
Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[2];
AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
Attribute::NoUnwind);
Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
TD->getIntPtrType(),
PointerType::getUnqual(Type::Int8Ty),
NULL);
return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
}
/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
unsigned Align, IRBuilder<> &B) {
Module *M = Caller->getParent();
Intrinsic::ID IID = Intrinsic::memcpy;
const Type *Tys[1];
Tys[0] = Len->getType();
Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1);
return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
ConstantInt::get(Type::Int32Ty, Align));
}
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
Value *Len, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI;
AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
Type::Int32Ty, TD->getIntPtrType(),
NULL);
return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
}
/// EmitMemCmp - Emit a call to the memcmp function.
Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
Value *Len, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[3];
AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly |
Attribute::NoUnwind);
Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
Type::Int32Ty,
PointerType::getUnqual(Type::Int8Ty),
PointerType::getUnqual(Type::Int8Ty),
TD->getIntPtrType(), NULL);
return B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
}
/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor'). This function is known to take a single of type matching 'Op' and
/// returns one value with the same type. If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
IRBuilder<> &B) {
char NameBuffer[20];
if (Op->getType() != Type::DoubleTy) {
// If we need to add a suffix, copy into NameBuffer.
unsigned NameLen = strlen(Name);
assert(NameLen < sizeof(NameBuffer)-2);
memcpy(NameBuffer, Name, NameLen);
if (Op->getType() == Type::FloatTy)
NameBuffer[NameLen] = 'f'; // floorf
else
NameBuffer[NameLen] = 'l'; // floorl
NameBuffer[NameLen+1] = 0;
Name = NameBuffer;
}
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(), NULL);
return B.CreateCall(Callee, Op, Name);
}
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
Module *M = Caller->getParent();
Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
Type::Int32Ty, NULL);
B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
}
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[2];
AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Value *F = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2),
Type::Int32Ty,
PointerType::getUnqual(Type::Int8Ty), NULL);
B.CreateCall(F, CastToCStr(Str, B), "puts");
}
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an integer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[2];
AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Constant *F;
if (isa<PointerType>(File->getType()))
F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::Int32Ty,
Type::Int32Ty, File->getType(), NULL);
else
F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
File->getType(), NULL);
Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
B.CreateCall2(F, Char, File, "fputc");
}
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[3];
AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture);
AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Constant *F;
if (isa<PointerType>(File->getType()))
F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3), Type::Int32Ty,
PointerType::getUnqual(Type::Int8Ty),
File->getType(), NULL);
else
F = M->getOrInsertFunction("fputs", Type::Int32Ty,
PointerType::getUnqual(Type::Int8Ty),
File->getType(), NULL);
B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
}
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI[3];
AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture);
AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Constant *F;
if (isa<PointerType>(File->getType()))
F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
TD->getIntPtrType(),
PointerType::getUnqual(Type::Int8Ty),
TD->getIntPtrType(), TD->getIntPtrType(),
File->getType(), NULL);
else
F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
PointerType::getUnqual(Type::Int8Ty),
TD->getIntPtrType(), TD->getIntPtrType(),
File->getType(), NULL);
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
B.CreateCall4(F, CastToCStr(Ptr, B), Size,
ConstantInt::get(TD->getIntPtrType(), 1), File);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
/// GetStringLengthH - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Look through noop bitcast instructions.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
return GetStringLengthH(BCI->getOperand(0), PHIs);
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN))
return ~0ULL; // already in the set.
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; // Disagree -> unknown.
LenSoFar = Len;
}
// Success, all agree.
return LenSoFar;
}
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
if (Len1 != Len2) return 0;
return Len1;
}
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return unknown.
User *GEP = 0;
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
GEP = GEPI;
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() != Instruction::GetElementPtr)
return 0;
GEP = CE;
} else {
return 0;
}
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return 0;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
if (!Idx->isZero())
return 0;
} else
return 0;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return 0;
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return 0;
Constant *GlobalInit = GV->getInitializer();
// Handle the ConstantAggregateZero case, which is a degenerate case. The
// initializer is constant zero so the length of the string must be zero.
if (isa<ConstantAggregateZero>(GlobalInit))
return 1; // Len = 0 offset by 1.
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getNumElements();
// Traverse the constant array from StartIdx (derived above) which is
// the place the GEP refers to in the array.
for (unsigned i = StartIdx; i != NumElts; ++i) {
Constant *Elt = Array->getOperand(i);
ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI) // This array isn't suitable, non-int initializer.
return 0;
if (CI->isZero())
return i-StartIdx+1; // We found end of string, success!
}
return 0; // The array isn't null terminated, conservatively return 'unknown'.
}
/// GetStringLength - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLength(Value *V) {
if (!isa<PointerType>(V->getType())) return 0;
SmallPtrSet<PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
// an empty string as a length.
return Len == ~0ULL ? 1 : Len;
}
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Miscellaneous LibCall Optimizations
//===----------------------------------------------------------------------===//
Bill Wendling
committed
namespace {
//===---------------------------------------===//
// 'exit' Optimizations
/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Verify we have a reasonable prototype for exit.
if (Callee->arg_size() == 0 || !CI->use_empty())
return 0;
// Verify the caller is main, and that the result type of main matches the
// argument type of exit.
if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
Caller->getReturnType() != CI->getOperand(1)->getType())
return 0;
TerminatorInst *OldTI = CI->getParent()->getTerminator();
// Create the return after the call.
ReturnInst *RI = B.CreateRet(CI->getOperand(1));
// Drop all successor phi node entries.
for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
// Erase all instructions from after our return instruction until the end of
// the block.
BasicBlock::iterator FirstDead = RI; ++FirstDead;
CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
return CI;
}
};
//===----------------------------------------------------------------------===//
// String and Memory LibCall Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'strcat' Optimizations
struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
--Len; // Unbias length.
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Dst = B.CreateGEP(Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
return Dst;
}
};
//===---------------------------------------===//
// 'strchr' Optimizations
struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
FT->getParamType(0) != FT->getReturnType())
return 0;
Value *SrcStr = CI->getOperand(1);
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
if (CharC == 0) {
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
ConstantInt::get(TD->getIntPtrType(), Len), B);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
std::string Str;
if (!GetConstantStringInfo(SrcStr, Str))
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// strchr can find the nul character.
Str += '\0';
char CharValue = CharC->getSExtValue();
// Compute the offset.
uint64_t i = 0;
while (1) {
if (i == Str.size()) // Didn't find the char. strchr returns null.
return Constant::getNullValue(CI->getType());
// Did we find our match?
if (Str[i] == CharValue)
break;
++i;
}
// strchr(s+n,c) -> gep(s+n+i,c)
Value *Idx = ConstantInt::get(Type::Int64Ty, i);
return B.CreateGEP(SrcStr, Idx, "strchr");
}
};
//===---------------------------------------===//
// 'strcmp' Optimizations
struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
return 0;
Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ConstantInt::get(CI->getType(), 0);
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 || Len2) {
// Choose the smallest Len excluding 0 which means 'unknown'.
if (!Len1 || (Len2 && Len2 < Len1))
Len1 = Len2;
return EmitMemCmp(Str1P, Str2P,
ConstantInt::get(TD->getIntPtrType(), Len1), B);
}
return 0;
}
};
//===---------------------------------------===//
// 'strncmp' Optimizations
struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
!isa<IntegerType>(FT->getParamType(2)))
return 0;
Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
return ConstantInt::get(CI->getType(), 0);
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
Length = LengthArg->getZExtValue();
else
return 0;
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strncmp(x, y) -> cnst (if both x and y are constant strings)
return ConstantInt::get(CI->getType(),
strncmp(Str1.c_str(), Str2.c_str(), Length));
return 0;
}
};
//===---------------------------------------===//
// 'strcpy' Optimizations
struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
return 0;
Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
return Dst;
}
};
//===---------------------------------------===//
// 'strlen' Optimizations
struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
Value *Src = CI->getOperand(1);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
return ConstantInt::get(CI->getType(), Len-1);
// Handle strlen(p) != 0.
if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
// strlen(x) != 0 --> *x != 0
// strlen(x) == 0 --> *x == 0
return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
}
};
Nick Lewycky
committed
//===---------------------------------------===//
// 'strto*' Optimizations
struct VISIBILITY_HIDDEN StrToOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)))
return 0;
Value *EndPtr = CI->getOperand(2);
if (isa<ConstantPointerNull>(EndPtr)) {
CI->setOnlyReadsMemory();
Nick Lewycky
committed
CI->addAttribute(1, Attribute::NoCapture);
Nick Lewycky
committed
return 0;
}
};
//===---------------------------------------===//
// 'memcmp' Optimizations
struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getReturnType() != Type::Int32Ty)
return 0;
Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
if (LHS == RHS) // memcmp(s,s,x) -> 0
return Constant::getNullValue(CI->getType());
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
uint64_t Len = LenC->getZExtValue();
if (Len == 0) // memcmp(s1,s2,0) -> 0
return Constant::getNullValue(CI->getType());
if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
}
// memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
// memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
const Type *PTy = PointerType::getUnqual(Len == 2 ?
Type::Int16Ty : Type::Int32Ty);
LHS = B.CreateBitCast(LHS, PTy, "tmp");
RHS = B.CreateBitCast(RHS, PTy, "tmp");
LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads.
return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
}
return 0;
}
};
//===---------------------------------------===//
// 'memcpy' Optimizations
struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType())
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
return CI->getOperand(1);
}
};
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
//===---------------------------------------===//
// 'memmove' Optimizations
struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType())
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
Module *M = Caller->getParent();
Intrinsic::ID IID = Intrinsic::memmove;
const Type *Tys[1];
Tys[0] = TD->getIntPtrType();
Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1);
Value *Dst = CastToCStr(CI->getOperand(1), B);
Value *Src = CastToCStr(CI->getOperand(2), B);
Value *Size = CI->getOperand(3);
Value *Align = ConstantInt::get(Type::Int32Ty, 1);
B.CreateCall4(MemMove, Dst, Src, Size, Align);
return CI->getOperand(1);
}
};
//===---------------------------------------===//
// 'memset' Optimizations
struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
FT->getParamType(1) != TD->getIntPtrType() ||
FT->getParamType(2) != TD->getIntPtrType())
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
Module *M = Caller->getParent();
Intrinsic::ID IID = Intrinsic::memset;
const Type *Tys[1];
Tys[0] = TD->getIntPtrType();
Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
Value *Dst = CastToCStr(CI->getOperand(1), B);
Value *Val = B.CreateTrunc(CI->getOperand(2), Type::Int8Ty);
Value *Size = CI->getOperand(3);
Value *Align = ConstantInt::get(Type::Int32Ty, 1);
B.CreateCall4(MemSet, Dst, Val, Size, Align);
return CI->getOperand(1);
}
};
//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'pow*' Optimizations
struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
return Op1C;
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
return EmitUnaryFloatFnCall(Op2, "exp2", B);
}
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
if (Op2C == 0) return 0;
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
return ConstantFP::get(CI->getType(), 1.0);
if (Op2C->isExactlyValue(0.5)) {
// FIXME: This is not safe for -0.0 and -inf. This can only be done when
// 'unsafe' math optimizations are allowed.
// x pow(x, 0.5) sqrt(x)
// ---------------------------------------------
// -0.0 +0.0 -0.0
// -inf +inf NaN
#if 0
// pow(x, 0.5) -> sqrt(x)
return B.CreateCall(get_sqrt(), Op1, "sqrt");
#endif
}
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
return Op1;
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
return B.CreateMul(Op1, Op1, "pow2");
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
return 0;
}
};
//===---------------------------------------===//
// 'exp2' Optimizations
struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
Value *Op = CI->getOperand(1);
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
Value *LdExpArg = 0;
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
}
if (LdExpArg) {
const char *Name;
if (Op->getType() == Type::FloatTy)
Name = "ldexpf";
else if (Op->getType() == Type::DoubleTy)
Name = "ldexp";
else
Name = "ldexpl";
Constant *One = ConstantFP::get(APFloat(1.0f));
if (Op->getType() != Type::FloatTy)
One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(), Type::Int32Ty,NULL);
return B.CreateCall2(Callee, One, LdExpArg);
}
return 0;
}
};
//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
FT->getParamType(0) != Type::DoubleTy)
return 0;
// If this is something like 'floor((double)floatval)', convert to floorf.
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
return 0;
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
return B.CreateFPExt(V, Type::DoubleTy);
}
};
//===----------------------------------------------------------------------===//
// Integer Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'ffs*' Optimizations
struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.