Skip to content
X86ISelDAGToDAG.cpp 49.2 KiB
Newer Older
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//

Evan Cheng's avatar
Evan Cheng committed
#define DEBUG_TYPE "x86-isel"
#include "X86InstrBuilder.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
Evan Cheng's avatar
Evan Cheng committed
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
Evan Cheng's avatar
Evan Cheng committed
#include <queue>
STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");


//===----------------------------------------------------------------------===//
//                      Pattern Matcher Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
  /// SDOperand's instead of register numbers for the leaves of the matched
  /// tree.
  struct X86ISelAddressMode {
    enum {
      RegBase,
    } BaseType;

    struct {            // This is really a union, discriminated by BaseType!
      SDOperand Reg;
      int FrameIndex;
    } Base;

Evan Cheng's avatar
Evan Cheng committed
    bool isRIPRel;     // RIP relative?
    unsigned Scale;
    SDOperand IndexReg; 
    unsigned Disp;
    GlobalValue *GV;
    Constant *CP;
Evan Cheng's avatar
Evan Cheng committed
    const char *ES;
    int JT;
    unsigned Align;    // CP alignment.
Evan Cheng's avatar
Evan Cheng committed
      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
        GV(0), CP(0), ES(0), JT(-1), Align(0) {
namespace {
  //===--------------------------------------------------------------------===//
  /// ISel - X86 specific code to select X86 machine instructions for
  /// SelectionDAG operations.
  ///
Chris Lattner's avatar
Chris Lattner committed
  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
    /// ContainsFPCode - Every instruction we select that uses or defines a FP
    /// register should set this to true.
    bool ContainsFPCode;

    /// FastISel - Enable fast(er) instruction selection.
    ///
    bool FastISel;

Evan Cheng's avatar
Evan Cheng committed
    /// TM - Keep a reference to X86TargetMachine.
    ///
    X86TargetMachine &TM;

    /// X86Lowering - This object fully describes how to lower LLVM code to an
    /// X86-specific SelectionDAG.
    X86TargetLowering X86Lowering;

    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;
Evan Cheng's avatar
Evan Cheng committed
    /// GlobalBaseReg - keeps track of the virtual register mapped onto global
    /// base register.
Evan Cheng's avatar
Evan Cheng committed
    unsigned GlobalBaseReg;
Evan Cheng's avatar
Evan Cheng committed
    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
Evan Cheng's avatar
Evan Cheng committed
        ContainsFPCode(false), FastISel(fast), TM(tm),
        Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
Evan Cheng's avatar
Evan Cheng committed
    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      return SelectionDAGISel::runOnFunction(Fn);
    }
   
    virtual const char *getPassName() const {
      return "X86 DAG->DAG Instruction Selection";
    }

    /// InstructionSelectBasicBlock - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);

    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"

  private:
    SDNode *Select(SDOperand N);
    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM,
Anton Korobeynikov's avatar
Anton Korobeynikov committed
                      bool isRoot = true, unsigned Depth = 0);
    bool MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
                          bool isRoot, unsigned Depth);
Evan Cheng's avatar
Evan Cheng committed
    bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
                    SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
    bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
                       SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
    bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
                             SDOperand N, SDOperand &Base, SDOperand &Scale,
                             SDOperand &Index, SDOperand &Disp,
                             SDOperand &InChain, SDOperand &OutChain);
    bool TryFoldLoad(SDOperand P, SDOperand N,
                     SDOperand &Base, SDOperand &Scale,
                     SDOperand &Index, SDOperand &Disp);
    void InstructionSelectPreprocess(SelectionDAG &DAG);
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.
    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
                                              char ConstraintCode,
                                              std::vector<SDOperand> &OutOps,
                                              SelectionDAG &DAG);
    
    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base, 
                                   SDOperand &Scale, SDOperand &Index,
                                   SDOperand &Disp) {
      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
Evan Cheng's avatar
Evan Cheng committed
        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
        AM.Base.Reg;
      Scale = getI8Imm(AM.Scale);
Evan Cheng's avatar
Evan Cheng committed
      // These are 32-bit even in 64-bit mode since RIP relative offset
      // is 32-bit.
      if (AM.GV)
        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
      else if (AM.CP)
        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp);
      else if (AM.ES)
        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
      else if (AM.JT != -1)
        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
      else
        Disp = getI32Imm(AM.Disp);
    /// getI8Imm - Return a target constant with the specified value, of type
    /// i8.
    inline SDOperand getI8Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i8);
    }

    /// getI16Imm - Return a target constant with the specified value, of type
    /// i16.
    inline SDOperand getI16Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i16);
    }

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDOperand getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }
Evan Cheng's avatar
Evan Cheng committed
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDNode *getGlobalBaseReg();
    /// getTruncate - return an SDNode that implements a subreg based truncate
    /// of the specified operand to the the specified value type.
    SDNode *getTruncate(SDOperand N0, MVT::ValueType VT);

Evan Cheng's avatar
Evan Cheng committed
#ifndef NDEBUG
    unsigned Indent;
#endif
static SDNode *findFlagUse(SDNode *N) {
  unsigned FlagResNo = N->getNumValues()-1;
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
    SDNode *User = *I;
    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
      SDOperand Op = User->getOperand(i);
      if (Op.Val == N && Op.ResNo == FlagResNo)
static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
                          SDNode *Root, SDNode *Skip, bool &found,
                          std::set<SDNode *> &Visited) {
  if (found ||
      Use->getNodeId() > Def->getNodeId() ||
      !Visited.insert(Use).second)
    return;

  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
    if (N == Def) {
      if (Use == ImmedUse)
        continue; // Immediate use is ok.
      if (Use == Root) {
        assert(Use->getOpcode() == ISD::STORE ||
               Use->getOpcode() == X86ISD::CMP);
        continue;
      }
    findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
/// isNonImmUse - Start searching from Root up the DAG to check is Def can
/// be reached. Return true if that's the case. However, ignore direct uses
/// by ImmedUse (which would be U in the example illustrated in
/// CanBeFoldedBy) and by Root (which can happen in the store case).
/// FIXME: to be really generic, we should allow direct use by any node
/// that is being folded. But realisticly since we only fold loads which
/// have one non-chain use, we only need to watch out for load/op/store
/// and load/op/cmp case where the root (store / cmp) may reach the load via
/// its chain operand.
static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
                               SDNode *Skip = NULL) {
  std::set<SDNode *> Visited;
  bool found = false;
  findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
  // If U use can somehow reach N through another path then U can't fold N or
  // it will create a cycle. e.g. In the following diagram, U can reach N
Evan Cheng's avatar
Evan Cheng committed
  // through X. If N is folded into into U, then X is both a predecessor and
  // a successor of U.
  //
  //         [ N ]
  //         ^  ^
  //         |  |
  //        /   \---
  //      /        [X]
  //      |         ^
  //     [U]--------|

  if (isNonImmUse(Root, N, U))
    return false;

  // If U produces a flag, then it gets (even more) interesting. Since it
  // would have been "glued" together with its flag use, we need to check if
  // it might reach N:
  //
  //       [ N ]
  //        ^ ^
  //        | |
  //       [U] \--
  //        ^   [TF]
  //        |    ^
  //        |    |
  //         \  /
  //          [FU]
  //
  // If FU (flag use) indirectly reach N (the load), and U fold N (call it
  // NU), then TF is a predecessor of FU and a successor of NU. But since
  // NU and FU are flagged together, this effectively creates a cycle.
  bool HasFlagUse = false;
  MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1);
  while ((VT == MVT::Flag && !Root->use_empty())) {
    SDNode *FU = findFlagUse(Root);
    if (FU == NULL)
      break;
    else {
      Root = FU;
      HasFlagUse = true;
    VT = Root->getValueType(Root->getNumValues()-1);

  if (HasFlagUse)
    return !isNonImmUse(Root, N, Root, U);
  return true;
/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
/// and move load below the TokenFactor. Replace store's chain operand with
/// load's chain result.
static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load,
                                 SDOperand Store, SDOperand TF) {
  std::vector<SDOperand> Ops;
  for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i)
    if (Load.Val == TF.Val->getOperand(i).Val)
      Ops.push_back(Load.Val->getOperand(0));
    else
      Ops.push_back(TF.Val->getOperand(i));
  DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size());
  DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
  DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
                         Store.getOperand(2), Store.getOperand(3));
}

/// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction
/// selector to pick more load-modify-store instructions. This is a common
/// case:
///
///     [Load chain]
///         ^
///         |
///       [Load]
///       ^    ^
///       |    |
///      /      \-
///     /         |
/// [TokenFactor] [Op]
///     ^          ^
///     |          |
///      \        /
///       \      /
///       [Store]
///
/// The fact the store's chain operand != load's chain will prevent the
/// (store (op (load))) instruction from being selected. We can transform it to:
///
///     [Load chain]
///         ^
///         |
///    [TokenFactor]
///         ^
///         |
///       [Load]
///       ^    ^
///       |    |
///       |     \- 
///       |       | 
///       |     [Op]
///       |       ^
///       |       |
///       \      /
///        \    /
///       [Store]
void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) {
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
         E = DAG.allnodes_end(); I != E; ++I) {
    if (!ISD::isNON_TRUNCStore(I))
      continue;
    SDOperand Chain = I->getOperand(0);
    if (Chain.Val->getOpcode() != ISD::TokenFactor)
      continue;

    SDOperand N1 = I->getOperand(1);
    SDOperand N2 = I->getOperand(2);
    if (MVT::isFloatingPoint(N1.getValueType()) ||
        MVT::isVector(N1.getValueType()) ||
      continue;

    bool RModW = false;
    SDOperand Load;
    unsigned Opcode = N1.Val->getOpcode();
    switch (Opcode) {
      case ISD::ADD:
      case ISD::MUL:
      case ISD::AND:
      case ISD::OR:
      case ISD::XOR:
      case ISD::ADDC:
      case ISD::ADDE: {
        SDOperand N10 = N1.getOperand(0);
        SDOperand N11 = N1.getOperand(1);
        if (ISD::isNON_EXTLoad(N10.Val))
        else if (ISD::isNON_EXTLoad(N11.Val)) {
          RModW = true;
          std::swap(N10, N11);
        }
        RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
          (N10.getOperand(1) == N2) &&
          (N10.Val->getValueType(0) == N1.getValueType());
        if (RModW)
          Load = N10;
        break;
      }
      case ISD::SUB:
      case ISD::SHL:
      case ISD::SRA:
      case ISD::SRL:
      case ISD::ROTL:
      case ISD::ROTR:
      case ISD::SUBC:
      case ISD::SUBE:
      case X86ISD::SHLD:
      case X86ISD::SHRD: {
        SDOperand N10 = N1.getOperand(0);
        if (ISD::isNON_EXTLoad(N10.Val))
          RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
            (N10.getOperand(1) == N2) &&
            (N10.Val->getValueType(0) == N1.getValueType());
      MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain);
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
/// when it has created a SelectionDAG for us to codegen.
void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());
  MachineFunction::iterator FirstMBB = BB;
#ifndef NDEBUG
  DOUT << "===== Instruction selection begins:\n";
Evan Cheng's avatar
Evan Cheng committed
  Indent = 0;
#endif
  DAG.setRoot(SelectRoot(DAG.getRoot()));
#ifndef NDEBUG
  DOUT << "===== Instruction selection ends:\n";
#endif
  DAG.RemoveDeadNodes();

  // Emit machine code to BB. 
  ScheduleAndEmitDAG(DAG);
  
  // If we are emitting FP stack code, scan the basic block to determine if this
  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
  // the terminator of the block.

  // Note that FP stack instructions *are* used in SSE code for long double,
  // so we do need this check.
  bool ContainsFPCode = false;

  // Scan all of the machine instructions in these MBBs, checking for FP
  // stores.  (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
  MachineFunction::iterator MBBI = FirstMBB;
  do {
    for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
         !ContainsFPCode && I != E; ++I) {
      if (I->getNumOperands() != 0 && I->getOperand(0).isRegister()) {
        const TargetRegisterClass *clas;
        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
              ((clas = RegMap->getRegClass(I->getOperand(0).getReg())) == 
                 X86::RFP32RegisterClass ||
               clas == X86::RFP64RegisterClass ||
               clas == X86::RFP80RegisterClass)) {
  } while (!ContainsFPCode && &*(MBBI++) != BB);

  // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
  // a copy of the input value in this block.  In SSE mode, we only care about
  // 80-bit values.
  if (!ContainsFPCode) {
    // Final check, check LLVM BB's that are successors to the LLVM BB
    // corresponding to BB for FP PHI nodes.
    const BasicBlock *LLVMBB = BB->getBasicBlock();
    const PHINode *PN;
    for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
         !ContainsFPCode && SI != E; ++SI) {
      for (BasicBlock::const_iterator II = SI->begin();
           (PN = dyn_cast<PHINode>(II)); ++II) {
        if (PN->getType()==Type::X86_FP80Ty ||
            (!Subtarget->hasSSE2() && PN->getType()->isFloatingPoint())) {
          ContainsFPCode = true;
          break;
        }
      }

  // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
  if (ContainsFPCode) {
    BuildMI(*BB, BB->getFirstTerminator(),
            TM.getInstrInfo()->get(X86::FP_REG_KILL));
    ++NumFPKill;
  }
/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done.  This just pattern matches for the
/// addressing mode
bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
  // Limit recursion.
  if (Depth > 5)
    return MatchAddressBase(N, AM, isRoot, Depth);
Evan Cheng's avatar
Evan Cheng committed
  // RIP relative addressing: %rip + 32-bit displacement!
  if (AM.isRIPRel) {
    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
      int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
Evan Cheng's avatar
Evan Cheng committed
      if (isInt32(AM.Disp + Val)) {
        AM.Disp += Val;
        return false;
      }
    }
    return true;
  }

Evan Cheng's avatar
Evan Cheng committed
  int id = N.Val->getNodeId();
  bool Available = isSelected(id);
  switch (N.getOpcode()) {
  default: break;
Evan Cheng's avatar
Evan Cheng committed
  case ISD::Constant: {
    int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
Evan Cheng's avatar
Evan Cheng committed
    if (isInt32(AM.Disp + Val)) {
      AM.Disp += Val;
      return false;
    }
    break;
  }
  case X86ISD::Wrapper: {
    bool is64Bit = Subtarget->is64Bit();
    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
    if (is64Bit && TM.getCodeModel() != CodeModel::Small)
    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
      break;
Evan Cheng's avatar
Evan Cheng committed
    // If value is available in a register both base and index components have
    // been picked, we can't fit the result available in the register in the
    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
Evan Cheng's avatar
Evan Cheng committed
    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
      bool isStatic = TM.getRelocationModel() == Reloc::Static;
      SDOperand N0 = N.getOperand(0);
      // Mac OS X X86-64 lower 4G address is not available.
      bool isAbs32 = !is64Bit ||
        (isStatic && Subtarget->hasLow4GUserSpaceAddress());
      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
        GlobalValue *GV = G->getGlobal();
        if (isAbs32 || isRoot) {
          AM.GV = GV;
          AM.Disp += G->getOffset();
          AM.isRIPRel = !isAbs32;
          return false;
        }
      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
        if (isAbs32 || isRoot) {
          AM.CP = CP->getConstVal();
          AM.Align = CP->getAlignment();
          AM.Disp += CP->getOffset();
Evan Cheng's avatar
Evan Cheng committed
          AM.isRIPRel = !isAbs32;
Evan Cheng's avatar
Evan Cheng committed
          return false;
        }
      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
        if (isAbs32 || isRoot) {
Evan Cheng's avatar
Evan Cheng committed
          AM.ES = S->getSymbol();
Evan Cheng's avatar
Evan Cheng committed
          AM.isRIPRel = !isAbs32;
Evan Cheng's avatar
Evan Cheng committed
          return false;
        }
      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
        if (isAbs32 || isRoot) {
Evan Cheng's avatar
Evan Cheng committed
          AM.JT = J->getIndex();
Evan Cheng's avatar
Evan Cheng committed
          AM.isRIPRel = !isAbs32;
  case ISD::FrameIndex:
    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
        unsigned Val = CN->getValue();
        if (Val == 1 || Val == 2 || Val == 3) {
          AM.Scale = 1 << Val;
          SDOperand ShVal = N.Val->getOperand(0);

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
            AM.IndexReg = ShVal.Val->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
Jeff Cohen's avatar
Jeff Cohen committed
            uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
Evan Cheng's avatar
Evan Cheng committed
            if (isInt32(Disp))
              AM.Disp = Disp;
            else
              AM.IndexReg = ShVal;
  case ISD::MUL:
    // X*[3,5,9] -> X+X*[2,4,8]
    if (!Available &&
        AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base.Reg.Val == 0 &&
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
          AM.Scale = unsigned(CN->getValue())-1;

          SDOperand MulVal = N.Val->getOperand(0);
          SDOperand Reg;

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
            Reg = MulVal.Val->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
Evan Cheng's avatar
Evan Cheng committed
            uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
            if (isInt32(Disp))
              AM.Disp = Disp;
            else
              Reg = N.Val->getOperand(0);
          } else {
            Reg = N.Val->getOperand(0);
          }

          AM.IndexReg = AM.Base.Reg = Reg;
          return false;
        }
    if (!Available) {
      if (!MatchAddress(N.Val->getOperand(0), AM, false, Depth+1) &&
          !MatchAddress(N.Val->getOperand(1), AM, false, Depth+1))
      if (!MatchAddress(N.Val->getOperand(1), AM, false, Depth+1) &&
          !MatchAddress(N.Val->getOperand(0), AM, false, Depth+1))
  case ISD::OR:
    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    if (!Available) {
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
        X86ISelAddressMode Backup = AM;
        // Start with the LHS as an addr mode.
        if (!MatchAddress(N.getOperand(0), AM, false) &&
            // Address could not have picked a GV address for the displacement.
            AM.GV == NULL &&
            // On x86-64, the resultant disp must fit in 32-bits.
            isInt32(AM.Disp + CN->getSignExtended()) &&
            // Check to see if the LHS & C is zero.
            CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getValue())) {
          return false;
        }
  return MatchAddressBase(N, AM, isRoot, Depth);
}

/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
                                       bool isRoot, unsigned Depth) {
  // Is the base register already occupied?
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
    // If so, check to see if the scale index register is set.
    if (AM.IndexReg.Val == 0) {
      AM.IndexReg = N;
      AM.Scale = 1;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = X86ISelAddressMode::RegBase;
  AM.Base.Reg = N;
  return false;
}

/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
Evan Cheng's avatar
Evan Cheng committed
bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
                                 SDOperand &Scale, SDOperand &Index,
                                 SDOperand &Disp) {
  if (MatchAddress(N, AM))
    return false;

Evan Cheng's avatar
Evan Cheng committed
  MVT::ValueType VT = N.getValueType();
  if (AM.BaseType == X86ISelAddressMode::RegBase) {
    if (!AM.Base.Reg.Val)
Evan Cheng's avatar
Evan Cheng committed
      AM.Base.Reg = CurDAG->getRegister(0, VT);
  if (!AM.IndexReg.Val)
Evan Cheng's avatar
Evan Cheng committed
    AM.IndexReg = CurDAG->getRegister(0, VT);

  getAddressOperands(AM, Base, Scale, Index, Disp);
  return true;
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
static inline bool isZeroNode(SDOperand Elt) {
  return ((isa<ConstantSDNode>(Elt) &&
  cast<ConstantSDNode>(Elt)->getValue() == 0) ||
  (isa<ConstantFPSDNode>(Elt) &&
  cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
/// match a load whose top elements are either undef or zeros.  The load flavor
/// is derived from the type of N, which is either v4f32 or v2f64.
Evan Cheng's avatar
Evan Cheng committed
bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
                                          SDOperand N, SDOperand &Base,
                                          SDOperand &Scale, SDOperand &Index,
                                          SDOperand &Disp, SDOperand &InChain,
                                          SDOperand &OutChain) {
  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
    InChain = N.getOperand(0).getValue(1);
    if (ISD::isNON_EXTLoad(InChain.Val) &&
        InChain.getValue(0).hasOneUse() &&
Evan Cheng's avatar
Evan Cheng committed
        CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) {
      LoadSDNode *LD = cast<LoadSDNode>(InChain);
Evan Cheng's avatar
Evan Cheng committed
      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))

  // Also handle the case where we explicitly require zeros in the top
  // elements.  This is a vector shuffle from the zero vector.
  if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() &&
      N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
      N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR && 
      N.getOperand(1).Val->hasOneUse() &&
      ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) &&
      N.getOperand(1).getOperand(0).hasOneUse()) {
    // Check to see if the BUILD_VECTOR is building a zero vector.
    SDOperand BV = N.getOperand(0);
    for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i)
      if (!isZeroNode(BV.getOperand(i)) &&
          BV.getOperand(i).getOpcode() != ISD::UNDEF)
        return false;  // Not a zero/undef vector.
    // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something
    // from the LHS.
    unsigned VecWidth = BV.getNumOperands();
    SDOperand ShufMask = N.getOperand(2);
    assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!");
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ShufMask.getOperand(0))) {
      if (C->getValue() == VecWidth) {
        for (unsigned i = 1; i != VecWidth; ++i) {
          if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) {
            // ok.
          } else {
            ConstantSDNode *C = cast<ConstantSDNode>(ShufMask.getOperand(i));
            if (C->getValue() >= VecWidth) return false;
          }
        }
      }
      
      // Okay, this is a zero extending load.  Fold it.
      LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(1).getOperand(0));
Evan Cheng's avatar
Evan Cheng committed
      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
        return false;
      OutChain = LD->getChain();
      InChain = SDOperand(LD, 1);
      return true;
    }
  }
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
Evan Cheng's avatar
Evan Cheng committed
bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N,
                                    SDOperand &Base, SDOperand &Scale,
                                    SDOperand &Index, SDOperand &Disp) {
  X86ISelAddressMode AM;
  if (MatchAddress(N, AM))
    return false;

Evan Cheng's avatar
Evan Cheng committed
  MVT::ValueType VT = N.getValueType();
  unsigned Complexity = 0;
  if (AM.BaseType == X86ISelAddressMode::RegBase)
    if (AM.Base.Reg.Val)
      Complexity = 1;
    else
Evan Cheng's avatar
Evan Cheng committed
      AM.Base.Reg = CurDAG->getRegister(0, VT);
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.Val)
    Complexity++;
  else
Evan Cheng's avatar
Evan Cheng committed
    AM.IndexReg = CurDAG->getRegister(0, VT);
Chris Lattner's avatar
Chris Lattner committed
  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
  // a simple shift.
  if (AM.Scale > 1)

  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
  // to a LEA. This is determined with some expermentation but is by no means
  // optimal (especially for code size consideration). LEA is nice because of
  // its three-address nature. Tweak the cost function again when we can run
  // convertToThreeAddress() at register allocation time.
Evan Cheng's avatar
Evan Cheng committed
  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
    // For X86-64, we should always use lea to materialize RIP relative
    // addresses.
Evan Cheng's avatar
Evan Cheng committed
    if (Subtarget->is64Bit())
Evan Cheng's avatar
Evan Cheng committed
      Complexity = 4;
    else
      Complexity += 2;
  }

  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
    Complexity++;

  if (Complexity > 2) {
    getAddressOperands(AM, Base, Scale, Index, Disp);
    return true;
  }
  return false;
}

bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
                                  SDOperand &Base, SDOperand &Scale,
                                  SDOperand &Index, SDOperand &Disp) {
  if (ISD::isNON_EXTLoad(N.Val) &&
      CanBeFoldedBy(N.Val, P.Val, P.Val))
Evan Cheng's avatar
Evan Cheng committed
    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
Evan Cheng's avatar
Evan Cheng committed
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
Evan Cheng's avatar
Evan Cheng committed
  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
Evan Cheng's avatar
Evan Cheng committed
  if (!GlobalBaseReg) {
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
    unsigned PC = RegMap->createVirtualRegister(X86::GR32RegisterClass);
    
    const TargetInstrInfo *TII = TM.getInstrInfo();
    BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack));
    BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), PC);
    
    // If we're using vanilla 'GOT' PIC style, we should use relative addressing
    // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
    if (TM.getRelocationModel() == Reloc::PIC_ &&
        Subtarget->isPICStyleGOT()) {
      GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
      BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg).
        addReg(PC).
        addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
    } else {
      GlobalBaseReg = PC;
    }
    
Evan Cheng's avatar
Evan Cheng committed
  }
Evan Cheng's avatar
Evan Cheng committed
  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val;
static SDNode *FindCallStartFromCall(SDNode *Node) {
  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
    assert(Node->getOperand(0).getValueType() == MVT::Other &&
         "Node doesn't have a token chain argument!");
  return FindCallStartFromCall(Node->getOperand(0).Val);
}

SDNode *X86DAGToDAGISel::getTruncate(SDOperand N0, MVT::ValueType VT) {
    SDOperand SRIdx;
    switch (VT) {
    case MVT::i8:
      SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
      // Ensure that the source register has an 8-bit subreg on 32-bit targets
      if (!Subtarget->is64Bit()) { 
        unsigned Opc;
        MVT::ValueType VT;
        switch (N0.getValueType()) {
        default: assert(0 && "Unknown truncate!");
        case MVT::i16:
          Opc = X86::MOV16to16_;
          VT = MVT::i16;
          break;
        case MVT::i32:
          Opc = X86::MOV32to32_;
          VT = MVT::i32;
          break;
        }
        N0 = 
          SDOperand(CurDAG->getTargetNode(Opc, VT, N0), 0);
      }
      break;
    case MVT::i16:
      SRIdx = CurDAG->getTargetConstant(2, MVT::i32); // SubRegSet 2
      break;
    case MVT::i32:
      SRIdx = CurDAG->getTargetConstant(3, MVT::i32); // SubRegSet 3
      break;
    default: assert(0 && "Unknown truncate!");
    }
    return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, 
                                 VT, 
                                 N0, SRIdx);
}


SDNode *X86DAGToDAGISel::Select(SDOperand N) {
  SDNode *Node = N.Val;