Newer
Older
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
Chris Lattner
committed
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
Chris Lattner
committed
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
Chris Lattner
committed
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner
committed
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
/// This pass performs 'jump threading', which looks at blocks that have
/// multiple predecessors and multiple successors. If one or more of the
/// predecessors of the block can be proven to always jump to one of the
/// successors, we forward the edge from the predecessor to the successor by
/// duplicating the contents of this block.
///
/// An example of when this can occur is code like this:
///
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
///
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
TargetData *TD;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
#else
SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
#endif
public:
static char ID; // Pass identification
JumpThreading() : FunctionPass(&ID) {}
bool runOnFunction(Function &F);
void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB);
bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB);
typedef SmallVectorImpl<std::pair<ConstantInt*,
BasicBlock*> > PredValueInfo;
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
PredValueInfo &Result);
bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessJumpOnPHI(PHINode *PN);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
char JumpThreading::ID = 0;
static RegisterPass<JumpThreading>
X("jump-threading", "Jump Threading");
// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
TD = getAnalysisIfAvailable<TargetData>();
FindLoopHeaders(F);
bool AnotherIteration = true, EverChanged = false;
while (AnotherIteration) {
AnotherIteration = false;
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
BasicBlock *BB = I;
while (ProcessBlock(BB))
Changed = true;
++I;
// If the block is trivially dead, zap it. This eliminates the successor
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
<< "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
Changed = true;
}
}
AnotherIteration = Changed;
EverChanged |= Changed;
}
LoopHeaders.clear();
return EverChanged;
Chris Lattner
committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
// If this is a pointer->pointer bitcast, it is free.
if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
continue;
// All other instructions count for at least one unit.
++Size;
// Calls are more expensive. If they are non-intrinsic calls, we model them
// as having cost of 4. If they are a non-vector intrinsic, we model them
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!isa<VectorType>(CI->getType()))
Size += 1;
}
}
// Threading through a switch statement is particularly profitable. If this
// block ends in a switch, decrease its cost to make it more likely to happen.
if (isa<SwitchInst>(I))
Size = Size > 6 ? Size-6 : 0;
return Size;
}
//===----------------------------------------------------------------------===//
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB. If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values. For example, if we have:
/// x = phi(1, 0, 0, 0)
/// y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
TargetData *TD) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
Loading
Loading full blame...