"git@repo.hca.bsc.es:rferrer/llvm-epi.git" did not exist on "1de9ccb4728194277bc0e2073f6c0e8f6a7da059"
Newer
Older
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// TargetData information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallVector.h"
Chris Lattner
committed
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/System/FEnv.h"
#include <cerrno>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// TargetData. This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
const TargetData &TD) {
Chris Lattner
committed
// This only handles casts to vectors currently.
const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (DestVTy == 0)
return ConstantExpr::getBitCast(C, DestTy);
Chris Lattner
committed
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
}
// If this is a bitcast from constant vector -> vector, fold it.
ConstantVector *CV = dyn_cast<ConstantVector>(C);
if (CV == 0)
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, VMCore can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = CV->getNumOperands();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
const Type *SrcEltTy = CV->getType()->getElementType();
const Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
const Type *DestIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD);
if (!C) return ConstantExpr::getBitCast(C, DestTy);
// Finally, VMCore can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
const Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask VMCore to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
CV = dyn_cast<ConstantVector>(C);
if (!CV) // If VMCore wasn't able to fold it, bail out.
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = TD.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
} else {
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
}
return ConstantVector::get(Result.data(), Result.size());
}
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
/// from a global, return the global and the constant. Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
int64_t &Offset, const TargetData &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
Offset = 0;
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
Chris Lattner
committed
if (!cast<PointerType>(CE->getOperand(0)->getType())
->getElementType()->isSized())
return false;
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
// Otherwise, add any offset that our operands provide.
gep_type_iterator GTI = gep_type_begin(CE);
Gabor Greif
committed
for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
Gabor Greif
committed
ConstantInt *CI = dyn_cast<ConstantInt>(*i);
if (!CI) return false; // Index isn't a simple constant?
if (CI->isZero()) continue; // Not adding anything.
if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
// N = N + Offset
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
} else {
const SequentialType *SQT = cast<SequentialType>(*GTI);
Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
}
}
return true;
}
return false;
}
/// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
/// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
/// pointer to copy results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. TD is the target data.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
unsigned char *CurPtr, unsigned BytesLeft,
const TargetData &TD) {
assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
++ByteOffset;
}
return true;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
}
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
}
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = TD.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (1) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, TD))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != CA->getType()->getNumElements(); ++Index) {
if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
BytesLeft, TD))
return false;
if (EltSize >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= EltSize;
CurPtr += EltSize;
}
return true;
}
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != CV->getType()->getNumElements(); ++Index) {
if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
BytesLeft, TD))
return false;
if (EltSize >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= EltSize;
CurPtr += EltSize;
}
return true;
}
// Otherwise, unknown initializer type.
return false;
}
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const TargetData &TD) {
const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
const Type *MapTy;
if (LoadTy->isFloatTy())
MapTy = Type::getInt32PtrTy(C->getContext());
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64PtrTy(C->getContext());
Duncan Sands
committed
else if (LoadTy->isVectorTy()) {
MapTy = IntegerType::get(C->getContext(),
TD.getTypeAllocSizeInBits(LoadTy));
MapTy = PointerType::getUnqual(MapTy);
} else
return 0;
C = FoldBitCast(C, MapTy, TD);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
return FoldBitCast(Res, LoadTy, TD);
return 0;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
GlobalValue *GVal;
int64_t Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
return 0;
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset < 0) return 0;
// If we're not accessing anything in this constant, the result is undefined.
if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
BytesLoaded, TD))
return 0;
APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
return ConstantInt::get(IntType->getContext(), ResultVal);
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
const TargetData *TD) {
// First, try the easy cases:
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return GV->getInitializer();
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return 0;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
std::string Str;
if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
unsigned StrLen = Str.length();
const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
// value.
if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
Chandler Carruth
committed
(isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
APInt StrVal(NumBits, 0);
APInt SingleChar(NumBits, 0);
if (TD->isLittleEndian()) {
for (signed i = StrLen-1; i >= 0; i--) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
} else {
for (unsigned i = 0; i < StrLen; i++) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
// Append NULL at the end.
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
if (GV->getInitializer()->isNullValue())
return Constant::getNullValue(ResTy);
if (isa<UndefValue>(GV->getInitializer()))
return UndefValue::get(ResTy);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things. We
// currently don't do any of this for big endian systems. It can be
// generalized in the future if someone is interested.
if (TD && TD->isLittleEndian())
return FoldReinterpretLoadFromConstPtr(CE, *TD);
return 0;
}
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
if (LI->isVolatile()) return 0;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, TD);
return 0;
}
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const TargetData *TD){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && TD) {
GlobalValue *GV1, *GV2;
int64_t Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
Owen Anderson
committed
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
}
}
return 0;
}
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/// CastGEPIndices - If array indices are not pointer-sized integers,
/// explicitly cast them so that they aren't implicitly casted by the
/// getelementptr.
static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
const Type *ResultTy,
const TargetData *TD) {
if (!TD) return 0;
const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1; i != NumOps; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
reinterpret_cast<Value *const *>(Ops+1),
i-1))) &&
Ops[i]->getType() != IntPtrTy) {
Any = true;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
IntPtrTy,
true),
Ops[i], IntPtrTy));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any) return 0;
Constant *C =
ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
C = Folded;
return C;
}
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
const Type *ResultTy,
const TargetData *TD) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
return 0;
unsigned BitWidth =
TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1; i != NumOps; ++i)
if (!isa<ConstantInt>(Ops[i]))
return 0;
APInt Offset = APInt(BitWidth,
TD->getIndexedOffset(Ptr->getType(),
(Value**)Ops+1, NumOps-1));
Ptr = cast<Constant>(Ptr->stripPointerCasts());
// If this is a GEP of a GEP, fold it all into a single GEP.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
if (!isa<ConstantInt>(NestedOps[i])) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
Offset += APInt(BitWidth,
TD->getIndexedOffset(Ptr->getType(),
(Value**)NestedOps.data(),
NestedOps.size()));
Ptr = cast<Constant>(Ptr->stripPointerCasts());
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::IntToPtr)
if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
BasePtr = Base->getValue();
BasePtr.zextOrTrunc(BitWidth);
}
if (Ptr->isNullValue() || BasePtr != 0) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// Also, this helps GlobalOpt do SROA on GlobalVariables.
const Type *Ty = Ptr->getType();
SmallVector<Constant*, 32> NewIdxs;
if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
Duncan Sands
committed
if (ATy->isPointerTy()) {
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
return 0;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
if (ElemSize == 0)
return 0;
APInt NewIdx = Offset.udiv(ElemSize);
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()),
NewIdx));
Ty = ATy->getElementType();
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
// Determine which field of the struct the offset points into. The
// getZExtValue is at least as safe as the StructLayout API because we
// know the offset is within the struct at this point.
const StructLayout &SL = *TD->getStructLayout(STy);
unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
ElIdx));
Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
Ty = STy->getTypeAtIndex(ElIdx);
} else {
// We've reached some non-indexable type.
break;
} while (Ty != cast<PointerType>(ResultTy)->getElementType());
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
return 0;
// Create a GEP.
Constant *C =
ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
if (Ty != cast<PointerType>(ResultTy)->getElementType())
C = FoldBitCast(C, ResultTy, *TD);
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction. If successful, the constant result is returned, if not, null
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
if (Result == 0) return 0;
// Handle PHI nodes specially here...
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
return 0; // Not all the same incoming constants...
// If we reach here, all incoming values are the same constant.
return Result;
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperands.
SmallVector<Constant*, 8> Ops;
Gabor Greif
committed
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (Constant *Op = dyn_cast<Constant>(*i))
Ops.push_back(Op);
else
return 0; // All operands not constant!
Chris Lattner
committed
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
TD);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Ops.data(), Ops.size(), TD);
}
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
const TargetData *TD) {
SmallVector<Constant*, 8> Ops;
for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) {
Constant *NewC = cast<Constant>(*i);
// Recursively fold the ConstantExpr's operands.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
NewC = ConstantFoldConstantExpression(NewCE, TD);
Ops.push_back(NewC);
}
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
TD);
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
Ops.data(), Ops.size(), TD);
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
Chris Lattner
committed
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant* const* Ops, unsigned NumOps,
const TargetData *TD) {
// Handle easy binops first.
Chris Lattner
committed
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
Chris Lattner
committed
switch (Opcode) {
default: return 0;
case Instruction::ICmp:
case Instruction::FCmp: assert(0 && "Invalid for compares");
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops, NumOps - 1);
return 0;
Chris Lattner
committed
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
if (TD && CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
Chris Lattner
committed
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
Chris Lattner
committed
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
Chris Lattner
committed
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size. This requires knowing the width of a
// pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
if (TD &&
TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
CE->getOpcode() == Instruction::PtrToInt)
return FoldBitCast(CE->getOperand(0), DestTy, *TD);
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
return FoldBitCast(Ops[0], DestTy, *TD);
return ConstantExpr::getBitCast(Ops[0], DestTy);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
return C;
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
}
}
Chris Lattner
committed
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
Chris Lattner
committed
const TargetData *TD) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
Chris Lattner
committed
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// ConstantExpr::getCompare cannot do this, because it doesn't have TD
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (TD && Ops1->isNullValue()) {
const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
Chris Lattner
committed
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
Chris Lattner
committed
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
Chris Lattner
committed
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
Chris Lattner
committed
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if ((CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
CE1->getOperand(0), TD);
Chris Lattner
committed
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
Constant *RHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
Constant *Ops[] = { LHS, RHS };
return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
}
Chris Lattner
committed
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
Chris Lattner
committed
}
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
Owen Anderson
committed
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing...
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
for (++I; I != E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
ConstantInt *CU = cast<ConstantInt>(I.getOperand());
assert(CU->getZExtValue() < STy->getNumElements() &&
"Struct index out of range!");
unsigned El = (unsigned)CU->getZExtValue();
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(El);
} else if (isa<ConstantAggregateZero>(C)) {
Owen Anderson
committed
C = Constant::getNullValue(STy->getElementType(El));
} else if (isa<UndefValue>(C)) {
C = UndefValue::get(STy->getElementType(El));
} else {
return 0;
}
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
if (CI->getZExtValue() >= ATy->getNumElements())
return 0;
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
Owen Anderson
committed
C = Constant::getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(ATy->getElementType());
else
return 0;
} else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
if (CI->getZExtValue() >= VTy->getNumElements())
return 0;
C = CP->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(VTy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(VTy->getElementType());
else
return 0;
} else {
return 0;
}
} else {
return 0;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool
llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::sqrt:
case Intrinsic::powi:
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::uadd_with_overflow: