Skip to content
SCCP.cpp 63.5 KiB
Newer Older
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches to be unconditional
//
// Notice that:
//   * This pass has a habit of making definitions be dead.  It is a good idea
//     to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Instructions.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/Support/Debug.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");

STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP");
STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");

/// LatticeVal class - This class represents the different lattice values that
/// an LLVM value may occupy.  It is a simple class with value semantics.
///
class VISIBILITY_HIDDEN LatticeVal {
  enum {
    /// undefined - This LLVM Value has no known value yet.
    undefined,
    
    /// constant - This LLVM Value has a specific constant value.
    constant,

    /// forcedconstant - This LLVM Value was thought to be undef until
    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
    /// with another (different) constant, it goes to overdefined, instead of
    /// asserting.
    forcedconstant,
    
    /// overdefined - This instruction is not known to be constant, and we know
    /// it has a value.
    overdefined
  } LatticeValue;    // The current lattice position
  
  Constant *ConstantVal; // If Constant value, the current value
  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
  // markOverdefined - Return true if this is a new status to be in...
  inline bool markOverdefined() {
    if (LatticeValue != overdefined) {
      LatticeValue = overdefined;
  // markConstant - Return true if this is a new status for us.
  inline bool markConstant(Constant *V) {
    if (LatticeValue != constant) {
      if (LatticeValue == undefined) {
        LatticeValue = constant;
        assert(V && "Marking constant with NULL");
        ConstantVal = V;
      } else {
        assert(LatticeValue == forcedconstant && 
               "Cannot move from overdefined to constant!");
        // Stay at forcedconstant if the constant is the same.
        if (V == ConstantVal) return false;
        
        // Otherwise, we go to overdefined.  Assumptions made based on the
        // forced value are possibly wrong.  Assuming this is another constant
        // could expose a contradiction.
        LatticeValue = overdefined;
      }
      assert(ConstantVal == V && "Marking constant with different value");
  inline void markForcedConstant(Constant *V) {
    assert(LatticeValue == undefined && "Can't force a defined value!");
    LatticeValue = forcedconstant;
    ConstantVal = V;
  }
  
  inline bool isUndefined() const { return LatticeValue == undefined; }
  inline bool isConstant() const {
    return LatticeValue == constant || LatticeValue == forcedconstant;
  }
  inline bool isOverdefined() const { return LatticeValue == overdefined; }
Chris Lattner's avatar
Chris Lattner committed
  inline Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return ConstantVal;
  }


//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
  SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
  /// GlobalValue - If we are tracking any values for the contents of a global
  /// variable, we keep a mapping from the constant accessor to the element of
  /// the global, to the currently known value.  If the value becomes
  /// overdefined, it's entry is simply removed from this map.
  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
  /// value out of a function, it will have an entry in this map, indicating
  /// what the known return value for the function is.
  DenseMap<Function*, LatticeVal> TrackedFunctionRetVals;
  // The reason for two worklists is that overdefined is the lowest state
  // on the lattice, and moving things to overdefined as fast as possible
  // makes SCCP converge much faster.
  // By having a separate worklist, we accomplish this because everything
  // possibly overdefined will become overdefined at the soonest possible
  // point.
  std::vector<Value*> OverdefinedInstWorkList;
  std::vector<Value*> InstWorkList;
  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
Chris Lattner's avatar
Chris Lattner committed
  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
  /// overdefined, despite the fact that the PHI node is overdefined.
  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
  std::set<Edge> KnownFeasibleEdges;
  /// MarkBlockExecutable - This method can be used by clients to mark all of
  /// the blocks that are known to be intrinsically live in the processed unit.
  void MarkBlockExecutable(BasicBlock *BB) {
    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
    BBExecutable.insert(BB);   // Basic block is executable!
    BBWorkList.push_back(BB);  // Add the block to the work list!
  }
  /// TrackValueOfGlobalVariable - Clients can use this method to
  /// inform the SCCPSolver that it should track loads and stores to the
  /// specified global variable if it can.  This is only legal to call if
  /// performing Interprocedural SCCP.
  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    const Type *ElTy = GV->getType()->getElementType();
    if (ElTy->isFirstClassType()) {
      LatticeVal &IV = TrackedGlobals[GV];
      if (!isa<UndefValue>(GV->getInitializer()))
        IV.markConstant(GV->getInitializer());
    }
  }

  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
  /// and out of the specified function (which cannot have its address taken),
  /// this method must be called.
  void AddTrackedFunction(Function *F) {
    assert(F->hasInternalLinkage() && "Can only track internal functions!");
    // Add an entry, F -> undef.
    TrackedFunctionRetVals[F];
  }

  /// Solve - Solve for constants and executable blocks.
  ///
  void Solve();

  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
  /// that branches on undef values cannot reach any of their successors.
  /// However, this is not a safe assumption.  After we solve dataflow, this
  /// method should be use to handle this.  If this returns true, the solver
  /// should be rerun.
  /// getExecutableBlocks - Once we have solved for constants, return the set of
  /// blocks that is known to be executable.
  SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
  /// getValueMapping - Once we have solved for constants, return the mapping of
  std::map<Value*, LatticeVal> &getValueMapping() {
  /// getTrackedFunctionRetVals - Get the inferred return value map.
  ///
  const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() {
  /// getTrackedGlobals - Get and return the set of inferred initializers for
  /// global variables.
  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
Chris Lattner's avatar
Chris Lattner committed
  inline void markOverdefined(Value *V) {
    markOverdefined(ValueState[V], V);
  }
  // markConstant - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that
  // the users of the instruction are updated later.
  //
  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    if (IV.markConstant(C)) {
      DOUT << "markConstant: " << *C << ": " << *V;
  
  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
    IV.markForcedConstant(C);
    DOUT << "markForcedConstant: " << *C << ": " << *V;
    InstWorkList.push_back(V);
  }
  
  inline void markConstant(Value *V, Constant *C) {
    markConstant(ValueState[V], V, C);
  // markOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the overdefined instruction
  // work list so that the users of the instruction are updated later.
  inline void markOverdefined(LatticeVal &IV, Value *V) {
    if (IV.markOverdefined()) {
      DEBUG(DOUT << "markOverdefined: ";
Chris Lattner's avatar
Chris Lattner committed
            if (Function *F = dyn_cast<Function>(V))
              DOUT << "Function '" << F->getName() << "'\n";
Chris Lattner's avatar
Chris Lattner committed
            else
      // Only instructions go on the work list
      OverdefinedInstWorkList.push_back(V);

  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
    if (IV.isOverdefined() || MergeWithV.isUndefined())
      return;  // Noop.
    if (MergeWithV.isOverdefined())
      markOverdefined(IV, V);
    else if (IV.isUndefined())
      markConstant(IV, V, MergeWithV.getConstant());
    else if (IV.getConstant() != MergeWithV.getConstant())
      markOverdefined(IV, V);
  
  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
    return mergeInValue(ValueState[V], V, MergeWithV);
  }

  // getValueState - Return the LatticeVal object that corresponds to the value.
  // This function is necessary because not all values should start out in the
  // underdefined state... Argument's should be overdefined, and
  // constants should be marked as constants.  If a value is not known to be an
  // Instruction object, then use this accessor to get its value from the map.
  //
  inline LatticeVal &getValueState(Value *V) {
    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
    if (I != ValueState.end()) return I->second;  // Common case, in the map
    if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner's avatar
Chris Lattner committed
      if (isa<UndefValue>(V)) {
        // Nothing to do, remain undefined.
      } else {
        LatticeVal &LV = ValueState[C];
        LV.markConstant(C);          // Constants are constant
        return LV;
    // All others are underdefined by default...
    return ValueState[V];
  }

  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  // work list if it is not already executable...
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
      return;  // This edge is already known to be executable!

    if (BBExecutable.count(Dest)) {
      DOUT << "Marking Edge Executable: " << Source->getName()
           << " -> " << Dest->getName() << "\n";

      // The destination is already executable, but we just made an edge
Chris Lattner's avatar
Chris Lattner committed
      // feasible that wasn't before.  Revisit the PHI nodes in the block
      // because they have potentially new operands.
      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
        visitPHINode(*cast<PHINode>(I));
  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  //
  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible...
  //
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow....  Based on this
  // information, we need to update the specified user of this instruction.
  //
  void OperandChangedState(User *U) {
    // Only instructions use other variable values!
    Instruction &I = cast<Instruction>(*U);
    if (BBExecutable.count(I.getParent()))   // Inst is executable?
      visit(I);
  }

private:
  friend class InstVisitor<SCCPSolver>;
  // visit implementations - Something changed in this instruction... Either an
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  //
Chris Lattner's avatar
Chris Lattner committed
  void visitPHINode(PHINode &I);
  void visitReturnInst(ReturnInst &I);
Chris Lattner's avatar
Chris Lattner committed
  void visitTerminatorInst(TerminatorInst &TI);
  void visitCastInst(CastInst &I);
  void visitSelectInst(SelectInst &I);
Chris Lattner's avatar
Chris Lattner committed
  void visitBinaryOperator(Instruction &I);
Reid Spencer's avatar
Reid Spencer committed
  void visitCmpInst(CmpInst &I);
  void visitExtractElementInst(ExtractElementInst &I);
  void visitInsertElementInst(InsertElementInst &I);
  void visitShuffleVectorInst(ShuffleVectorInst &I);

  // Instructions that cannot be folded away...
  void visitStoreInst     (Instruction &I);
  void visitLoadInst      (LoadInst &I);
  void visitGetElementPtrInst(GetElementPtrInst &I);
  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
  void visitInvokeInst    (InvokeInst &II) {
    visitCallSite(CallSite::get(&II));
    visitTerminatorInst(II);
  void visitCallSite      (CallSite CS);
  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
Chris Lattner's avatar
Chris Lattner committed
  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
Chris Lattner's avatar
Chris Lattner committed
  void visitFreeInst      (Instruction &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // If a new instruction is added to LLVM that we don't handle...
    cerr << "SCCP: Don't know how to handle: " << I;
Chris Lattner's avatar
Chris Lattner committed
    markOverdefined(&I);   // Just in case
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
//
void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
  Succs.resize(TI.getNumSuccessors());
Chris Lattner's avatar
Chris Lattner committed
  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
    } else {
      LatticeVal &BCValue = getValueState(BI->getCondition());
          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
        // Overdefined condition variables, and branches on unfoldable constant
        // conditions, mean the branch could go either way.
        Succs[0] = Succs[1] = true;
      } else if (BCValue.isConstant()) {
        // Constant condition variables mean the branch can only go a single way
Zhou Sheng's avatar
Zhou Sheng committed
        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
Reid Spencer's avatar
Reid Spencer committed
  } else if (isa<InvokeInst>(&TI)) {
    // Invoke instructions successors are always executable.
    Succs[0] = Succs[1] = true;
Chris Lattner's avatar
Chris Lattner committed
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    LatticeVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined() ||   // Overdefined condition?
        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
      // All destinations are executable!
Chris Lattner's avatar
Chris Lattner committed
      Succs.assign(TI.getNumSuccessors(), true);
    } else if (SCValue.isConstant()) {
      Constant *CPV = SCValue.getConstant();
      // Make sure to skip the "default value" which isn't a value
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
          Succs[i] = true;
          return;
        }
      }

      // Constant value not equal to any of the branches... must execute
      // default branch then...
      Succs[0] = true;
    }
  } else {
    assert(0 && "SCCP: Don't know how to handle this terminator!");
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible...
//
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
  assert(BBExecutable.count(To) && "Dest should always be alive!");

  // Make sure the source basic block is executable!!
  if (!BBExecutable.count(From)) return false;
  // Check to make sure this edge itself is actually feasible now...
  TerminatorInst *TI = From->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isUnconditional())
      LatticeVal &BCValue = getValueState(BI->getCondition());
      if (BCValue.isOverdefined()) {
        // Overdefined condition variables mean the branch could go either way.
        return true;
      } else if (BCValue.isConstant()) {
        // Not branching on an evaluatable constant?
        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
        // Constant condition variables mean the branch can only go a single way
        return BI->getSuccessor(BCValue.getConstant() ==
Zhou Sheng's avatar
Zhou Sheng committed
                                       ConstantInt::getFalse()) == To;
Reid Spencer's avatar
Reid Spencer committed
  } else if (isa<InvokeInst>(TI)) {
    // Invoke instructions successors are always executable.
    return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    LatticeVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined()) {  // Overdefined condition?
      // All destinations are executable!
      return true;
    } else if (SCValue.isConstant()) {
      Constant *CPV = SCValue.getConstant();
      if (!isa<ConstantInt>(CPV))
        return true;  // not a foldable constant?

      // Make sure to skip the "default value" which isn't a value
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
          return SI->getSuccessor(i) == To;

      // Constant value not equal to any of the branches... must execute
      // default branch then...
      return SI->getDefaultDest() == To;
    }
    return false;
  } else {
    cerr << "Unknown terminator instruction: " << *TI;
// visit Implementations - Something changed in this instruction... Either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
//
void SCCPSolver::visitPHINode(PHINode &PN) {
  LatticeVal &PNIV = getValueState(&PN);
Chris Lattner's avatar
Chris Lattner committed
  if (PNIV.isOverdefined()) {
    // There may be instructions using this PHI node that are not overdefined
    // themselves.  If so, make sure that they know that the PHI node operand
    // changed.
    std::multimap<PHINode*, Instruction*>::iterator I, E;
    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
    if (I != E) {
Chris Lattner's avatar
Chris Lattner committed
      for (; I != E; ++I) Users.push_back(I->second);
      while (!Users.empty()) {
        visit(Users.back());
        Users.pop_back();
      }
    }
    return;  // Quick exit
  }
  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64) {
    markOverdefined(PNIV, &PN);
    return;
  }

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is overdefined.
  // If there are no executable operands, the PHI remains undefined.
  //
  Constant *OperandVal = 0;
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
Chris Lattner's avatar
Chris Lattner committed
    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
        markOverdefined(PNIV, &PN);
      if (OperandVal == 0) {   // Grab the first value...
        OperandVal = IV.getConstant();
      } else {                // Another value is being merged in!
        // There is already a reachable operand.  If we conflict with it,
        // then the PHI node becomes overdefined.  If we agree with it, we
        // can continue on.
        // Check to see if there are two different constants merging...
        if (IV.getConstant() != OperandVal) {
          // Yes there is.  This means the PHI node is not constant.
          // You must be overdefined poor PHI.
          //
          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
          return;    // I'm done analyzing you
Chris Lattner's avatar
Chris Lattner committed
        }
  // If we exited the loop, this means that the PHI node only has constant
  // arguments that agree with each other(and OperandVal is the constant) or
  // OperandVal is null because there are no defined incoming arguments.  If
  // this is the case, the PHI remains undefined.
  if (OperandVal)
Misha Brukman's avatar
Misha Brukman committed
    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
void SCCPSolver::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) return;  // Ret void

  // If we are tracking the return value of this function, merge it in.
  Function *F = I.getParent()->getParent();
  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
    DenseMap<Function*, LatticeVal>::iterator TFRVI =
      TrackedFunctionRetVals.find(F);
    if (TFRVI != TrackedFunctionRetVals.end() &&
        !TFRVI->second.isOverdefined()) {
      LatticeVal &IV = getValueState(I.getOperand(0));
      mergeInValue(TFRVI->second, F, IV);
    }
  }
}


void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
  getFeasibleSuccessors(TI, SuccFeasible);
  // Mark all feasible successors executable...
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
void SCCPSolver::visitCastInst(CastInst &I) {
Chris Lattner's avatar
Chris Lattner committed
  Value *V = I.getOperand(0);
  LatticeVal &VState = getValueState(V);
  if (VState.isOverdefined())          // Inherit overdefinedness of operand
Chris Lattner's avatar
Chris Lattner committed
    markOverdefined(&I);
  else if (VState.isConstant())        // Propagate constant value
    markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 
                                           VState.getConstant(), I.getType()));
void SCCPSolver::visitSelectInst(SelectInst &I) {
  LatticeVal &CondValue = getValueState(I.getCondition());
  if (CondValue.isUndefined())
    return;
Zhou Sheng's avatar
Zhou Sheng committed
    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
Zhou Sheng's avatar
Zhou Sheng committed
                                                          : I.getFalseValue()));
      return;
    }
  }
  
  // Otherwise, the condition is overdefined or a constant we can't evaluate.
  // See if we can produce something better than overdefined based on the T/F
  // value.
  LatticeVal &TVal = getValueState(I.getTrueValue());
  LatticeVal &FVal = getValueState(I.getFalseValue());
  
  // select ?, C, C -> C.
  if (TVal.isConstant() && FVal.isConstant() && 
      TVal.getConstant() == FVal.getConstant()) {
    markConstant(&I, FVal.getConstant());
    return;
  }

  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
    mergeInValue(&I, FVal);
  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
    mergeInValue(&I, TVal);
  } else {
    markOverdefined(&I);
// Handle BinaryOperators and Shift Instructions...
void SCCPSolver::visitBinaryOperator(Instruction &I) {
Chris Lattner's avatar
Chris Lattner committed
  if (IV.isOverdefined()) return;

  LatticeVal &V1State = getValueState(I.getOperand(0));
  LatticeVal &V2State = getValueState(I.getOperand(1));
  if (V1State.isOverdefined() || V2State.isOverdefined()) {
    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    // operand is overdefined.
    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
      LatticeVal *NonOverdefVal = 0;
      if (!V1State.isOverdefined()) {
        NonOverdefVal = &V1State;
      } else if (!V2State.isOverdefined()) {
        NonOverdefVal = &V2State;
      }

      if (NonOverdefVal) {
        if (NonOverdefVal->isUndefined()) {
          // Could annihilate value.
          if (I.getOpcode() == Instruction::And)
            markConstant(IV, &I, Constant::getNullValue(I.getType()));
Reid Spencer's avatar
Reid Spencer committed
          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
            markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
          else
            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
          return;
        } else {
          if (I.getOpcode() == Instruction::And) {
            if (NonOverdefVal->getConstant()->isNullValue()) {
              markConstant(IV, &I, NonOverdefVal->getConstant());
Zhou Sheng's avatar
Zhou Sheng committed
            if (ConstantInt *CI =
                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
              if (CI->isAllOnesValue()) {
                markConstant(IV, &I, NonOverdefVal->getConstant());
                return;    // X or -1 = -1
              }
          }
        }
      }
    }


Chris Lattner's avatar
Chris Lattner committed
    // If both operands are PHI nodes, it is possible that this instruction has
    // a constant value, despite the fact that the PHI node doesn't.  Check for
    // this condition now.
    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
        if (PN1->getParent() == PN2->getParent()) {
          // Since the two PHI nodes are in the same basic block, they must have
          // entries for the same predecessors.  Walk the predecessor list, and
          // if all of the incoming values are constants, and the result of
          // evaluating this expression with all incoming value pairs is the
          // same, then this expression is a constant even though the PHI node
          // is not a constant!
Chris Lattner's avatar
Chris Lattner committed
          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
Chris Lattner's avatar
Chris Lattner committed
            BasicBlock *InBlock = PN1->getIncomingBlock(i);
            LatticeVal &In2 =
              getValueState(PN2->getIncomingValueForBlock(InBlock));
Chris Lattner's avatar
Chris Lattner committed

            if (In1.isOverdefined() || In2.isOverdefined()) {
              Result.markOverdefined();
              break;  // Cannot fold this operation over the PHI nodes!
            } else if (In1.isConstant() && In2.isConstant()) {
              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
                                              In2.getConstant());
Chris Lattner's avatar
Chris Lattner committed
              if (Result.isUndefined())
                Result.markConstant(V);
              else if (Result.isConstant() && Result.getConstant() != V) {
Chris Lattner's avatar
Chris Lattner committed
                Result.markOverdefined();
                break;
              }
            }
          }

          // If we found a constant value here, then we know the instruction is
          // constant despite the fact that the PHI nodes are overdefined.
          if (Result.isConstant()) {
            markConstant(IV, &I, Result.getConstant());
            // Remember that this instruction is virtually using the PHI node
            // operands.
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
            return;
          } else if (Result.isUndefined()) {
            return;
          }

          // Okay, this really is overdefined now.  Since we might have
          // speculatively thought that this was not overdefined before, and
          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
          // make sure to clean out any entries that we put there, for
          // efficiency.
          std::multimap<PHINode*, Instruction*>::iterator It, E;
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
        }

    markOverdefined(IV, &I);
  } else if (V1State.isConstant() && V2State.isConstant()) {
    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
                                           V2State.getConstant()));
Reid Spencer's avatar
Reid Spencer committed
// Handle ICmpInst instruction...
void SCCPSolver::visitCmpInst(CmpInst &I) {
  LatticeVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  LatticeVal &V1State = getValueState(I.getOperand(0));
  LatticeVal &V2State = getValueState(I.getOperand(1));

  if (V1State.isOverdefined() || V2State.isOverdefined()) {
    // If both operands are PHI nodes, it is possible that this instruction has
    // a constant value, despite the fact that the PHI node doesn't.  Check for
    // this condition now.
    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
        if (PN1->getParent() == PN2->getParent()) {
          // Since the two PHI nodes are in the same basic block, they must have
          // entries for the same predecessors.  Walk the predecessor list, and
          // if all of the incoming values are constants, and the result of
          // evaluating this expression with all incoming value pairs is the
          // same, then this expression is a constant even though the PHI node
          // is not a constant!
          LatticeVal Result;
          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
            BasicBlock *InBlock = PN1->getIncomingBlock(i);
            LatticeVal &In2 =
              getValueState(PN2->getIncomingValueForBlock(InBlock));

            if (In1.isOverdefined() || In2.isOverdefined()) {
              Result.markOverdefined();
              break;  // Cannot fold this operation over the PHI nodes!
            } else if (In1.isConstant() && In2.isConstant()) {
              Constant *V = ConstantExpr::getCompare(I.getPredicate(), 
                                                     In1.getConstant(), 
                                                     In2.getConstant());
              if (Result.isUndefined())
                Result.markConstant(V);
              else if (Result.isConstant() && Result.getConstant() != V) {
                Result.markOverdefined();
                break;
              }
            }
          }

          // If we found a constant value here, then we know the instruction is
          // constant despite the fact that the PHI nodes are overdefined.
          if (Result.isConstant()) {
            markConstant(IV, &I, Result.getConstant());
            // Remember that this instruction is virtually using the PHI node
            // operands.
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
            return;
          } else if (Result.isUndefined()) {
            return;
          }

          // Okay, this really is overdefined now.  Since we might have
          // speculatively thought that this was not overdefined before, and
          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
          // make sure to clean out any entries that we put there, for
          // efficiency.
          std::multimap<PHINode*, Instruction*>::iterator It, E;
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
        }

    markOverdefined(IV, &I);
  } else if (V1State.isConstant() && V2State.isConstant()) {
    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 
                                                  V1State.getConstant(), 
                                                  V2State.getConstant()));
  }
}

void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
  // FIXME : SCCP does not handle vectors properly.
  markOverdefined(&I);
  return;

#if 0
  LatticeVal &ValState = getValueState(I.getOperand(0));
  LatticeVal &IdxState = getValueState(I.getOperand(1));

  if (ValState.isOverdefined() || IdxState.isOverdefined())
    markOverdefined(&I);
  else if(ValState.isConstant() && IdxState.isConstant())
    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
                                                     IdxState.getConstant()));
void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
  // FIXME : SCCP does not handle vectors properly.
  markOverdefined(&I);
  return;
#if 0
  LatticeVal &ValState = getValueState(I.getOperand(0));
  LatticeVal &EltState = getValueState(I.getOperand(1));
  LatticeVal &IdxState = getValueState(I.getOperand(2));

  if (ValState.isOverdefined() || EltState.isOverdefined() ||
      IdxState.isOverdefined())
    markOverdefined(&I);
  else if(ValState.isConstant() && EltState.isConstant() &&
          IdxState.isConstant())
    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
                                                    EltState.getConstant(),
                                                    IdxState.getConstant()));
  else if (ValState.isUndefined() && EltState.isConstant() &&
Chris Lattner's avatar
Chris Lattner committed
    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
                                                   EltState.getConstant(),
                                                   IdxState.getConstant()));
void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
  // FIXME : SCCP does not handle vectors properly.
  markOverdefined(&I);
  return;
#if 0
  LatticeVal &V1State   = getValueState(I.getOperand(0));
  LatticeVal &V2State   = getValueState(I.getOperand(1));
  LatticeVal &MaskState = getValueState(I.getOperand(2));

  if (MaskState.isUndefined() ||
      (V1State.isUndefined() && V2State.isUndefined()))
    return;  // Undefined output if mask or both inputs undefined.
  
  if (V1State.isOverdefined() || V2State.isOverdefined() ||
      MaskState.isOverdefined()) {
    markOverdefined(&I);
  } else {
    // A mix of constant/undef inputs.
    Constant *V1 = V1State.isConstant() ? 
        V1State.getConstant() : UndefValue::get(I.getType());
    Constant *V2 = V2State.isConstant() ? 
        V2State.getConstant() : UndefValue::get(I.getType());
    Constant *Mask = MaskState.isConstant() ? 
      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
  }
// Handle getelementptr instructions... if all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
//
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
  SmallVector<Constant*, 8> Operands;
  Operands.reserve(I.getNumOperands());

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    LatticeVal &State = getValueState(I.getOperand(i));
    if (State.isUndefined())
      return;  // Operands are not resolved yet...
    else if (State.isOverdefined()) {
      return;
    }
    assert(State.isConstant() && "Unknown state!");
    Operands.push_back(State.getConstant());
  }

  Constant *Ptr = Operands[0];
  Operands.erase(Operands.begin());  // Erase the pointer from idx list...

  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
                                                      Operands.size()));
void SCCPSolver::visitStoreInst(Instruction &SI) {
  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
    return;
  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;

  // Get the value we are storing into the global.
  LatticeVal &PtrVal = getValueState(SI.getOperand(0));